在方法论的层面,大数据是一种全新的思维方式。按照大数据的思维方式,我们做事情的方式与方法需要从根本上改变。
要说清楚大数据思维的重要性,需要先回顾一下自17世纪以来一直指导我们曰常做事行为的先前最重要的一种思维方式一一机械思维。今天说起机械思维,很多人马上想到的是死板、僵化,觉得非常落伍,甚至「机械」本身都算不上什么好词。但是在两个世纪之前,这可是一个时髦的词,就如同今天我们说互联网思维、大数据思维很时髦一样。可以毫不夸张地汫,在过去的三个多世纪里,机械思维可以算得上是人类总结出的最重要的思维方式,也是现代文明的基础。今天,很多人的行为方式和思维方式其实依然没有摆脱机械思维,尽管他们嘴上谈论的是更时髦的概念。
那么,机械思维是如何产生的?为什么它的影响力能够延伸至今,它和我们将要讨论的大数据思维又有什么关联和本质区别呢?
不论经济学家还是之前的托勒密、牛顿等人,他们都遵循着机械思维。如果我们把他们的方法论做一个简单的概括,其核心思想有如下两点:首先,需要有一个简单的元模型,这个模型可能是假设出来的,然后再用这个元模型构建复杂的模型;其次,整个模型要和历史数据相吻合。这在今天动态规划管理学上还被广泛地使用,其核心思想和托勒密的方法论是一致的。
后来人们将牛顿的方法论概括为机械思维,其核心思想可以概括成这样几句话:
第一,世界变化的规律是确定的,这一点从托勒密到牛顿大家都认可。
第二,因为有确定性做保障,因此规律不仅是可以被认识的,而且可以用简单的公式或者语言描述清楚。这一点在牛顿之前,大部分人并不认可,而是简单地把规律归结为神的作用。
第三,这些规律应该是放之四海而皆准的,可以应用到各种未知领域指导实践,这种认识是在牛顿之后才有的。
这些其实是机械思维中积极的部分。机械思维更广泛的影响力是作为一种准则指导人们的行为,其核心思想可以概括成确定性(或者可预测性)和因果关系。牛顿可以把所有天体运动的规律用几个定律讲清楚,并且应用到任何场合都是正确的,这就是确定性。类似地,当我们给物体施加一个外力时,它就获得一个加速度,而加速度的大小取决于外力和物体本身的质量,这是一种因果关系。没有这些确定性和因果关系,我们就无法认识世界。
从牛顿开始,人类社会的进步在很大程度上得益于机械思维,但是到了信息时代,它的局限性也越来越明显。首先,并非所有的规律都可以用简单的原理描述;其次,像过去那样找到因果关系已经变得非常困难,因为简单的因果关系规律性都被发现了。另外,随着人类对世界认识得越来越清楚,人们发现世界本身存在着很大的不确定性,并非如过去想象的那样一切都是可以确定的。因此,在现代社会里,人们开始考虑在承认不确定性的情况下如何取得科学上的突破,或者把事情做得更好。这也就导致一种新的方法论诞生。
不确定性在我们的世界里无处不在。我们经常可以看到这样一种怪现象,很多时候专家们对未来各种趋势的预测是错的,这在金融领域尤其常见。如果读者有心统计一些经济学家们对未来的看法,就会发现它们基本上是对错各一半。这并不是因为他们缺乏专业知识,而是由于不确定性是这个世界的重要特征,以至于我们按照传统的方法——机械论的方法难以做出准确的预测。
世界的不确定性来自两方面,首先是当我们对这个世界的方方面面了解得越来越细致之后,会发现影响世界的变量其实非常多,已经无法通过简单的办法或者公式算出结果,因此我们宁愿采用一些针对随机事件的方法来处理它们,人为地把它们归为不确定的一类。
反映出在信息时代的方法论:谁掌握了信息,谁就能够获取财富,这就如同在工业时代,谁掌握了资本谁就能获取财富一样。
当然,用不确定性这种眼光看待世界,再用信息消除不确定性,不仅能够赚钱,而且能够把很多智能型的问题转化成信息处理的问题,具体说,就是利用信息来消除不确定性的问题。比如下象棋,每一种情况都有几种可能,却难以决定最终的选择,这就是不确定性的表现。再比如要识别一个人脸的图像,实际上可以看成是从有限种可能性中挑出一种,因为全世界的人数是有限的,这也就把识别问题变成了消除不确定性的问题。