Random 类作为JAVA中用于产生的随机数 ,new Random(10) :10是种子数。
注意:Random 的一个特点是:相同种子数的Random对象,对应相同次数生成的随机数字是完全相同的.
验证代码:
Random r1 = new Random(10);
Random r2 = new Random(10);
for(int i = 0;i < 4;i++){
System.out.println(r1.nextInt(5));
}
System.out.println("++++++++++++++++++++++");
for(int i = 0;i < 4;i++){
System.out.println(r2.nextInt(5));
}
结果:r1 产生的随机数
3
0
3
0
++++++++++++++++++++++
3 r2产生的随机数
0
3
0
分析: 虽说是随机数发生器,但是还是按照某种算法一步一步执行下去的,种子数一定算法一样那么同一时刻的产生的数值当然该一样.
示例代码:
Random r = new Random();
Random r1 = new Random(10);
再次强调:种子数只是随机算法的起源数字,和生成的随机数字的区间无关。
Random类使用示例
使用Random类,一般是生成指定区间的随机数字,下面就一一介绍如何生成对应区间的随机数字。以下生成随机数的代码均使用以下Random对象r进行生成:
Random r = new Random();
a、生成[0,1.0)区间的小数
double d1 = r.nextDouble();
直接使用nextDouble方法获得。
b、生成[0,5.0)区间的小数
double d2 = r.nextDouble() * 5;
因为nextDouble方法生成的数字区间是[0,1.0),将该区间扩大5倍即是要求的区间。
同理,生成[0,d)区间的随机小数,d为任意正的小数,则只需要将nextDouble方法的返回值乘以d即可。
c、生成[1,2.5)区间的小数
double d3 = r.nextDouble() * 1.5 + 1;
生成[1,2.5)区间的随机小数,则只需要首先生成[0,1.5)区间的随机数字,然后将生成的随机数区间加1即可。
同理,生成任意非从0开始的小数区间[d1,d2)范围的随机数字(其中d1不等于0),则只需要首先生成[0,d2-d1)区间的随机数字,然后将生成的随机数字区间加上d1即可。
d、生成任意整数
int n1 = r.nextInt();
直接使用nextInt方法即可。
e、生成[0,10)区间的整数
int n2 = r.nextInt(10);
n2 = Math.abs(r.nextInt() % 10);
以上两行代码均可生成[0,10)区间的整数。
第一种实现使用Random类中的nextInt(int n)方法直接实现。
第二种实现中,首先调用nextInt()方法生成一个任意的int数字,该数字和10取余以后生成的数字区间为(-10,10),然后再对该区间求绝对值,则得到的区间就是[0,10)了。
同理,生成任意[0,n)区间的随机整数,都可以使用如下代码:
int n2 = r.nextInt(n);
n2 = Math.abs(r.nextInt() % n);
f、生成[0,10]区间的整数
int n3 = r.nextInt(11);
n3 = Math.abs(r.nextInt() % 11);
相对于整数区间,[0,10]区间和[0,11)区间等价,所以即生成[0,11)区间的整数。
g、生成[-3,15)区间的整数
int n4 = r.nextInt(18) - 3;
n4 = Math.abs(r.nextInt() % 18) - 3;
生成非从0开始区间的随机整数,可以参看上面非从0开始的小数区间实现原理的说明。
h、几率实现
按照一定的几率实现程序逻辑也是随机处理可以解决的一个问题。下面以一个简单的示例演示如何使用随机数字实现几率的逻辑。
在前面的方法介绍中,nextInt(int n)方法中生成的数字是均匀的,也就是说该区间内部的每个数字生成的几率是相同的。那么如果生成一个[0,100)区间的随机整数,则每个数字生成的几率应该是相同的,而且由于该区间中总计有100个整数,所以每个数字的几率都是1%。按照这个理论,可以实现程序中的几率问题。
示例:随机生成一个整数,该整数以55%的几率生成1,以40%的几率生成2,以5%的几率生成3。实现的代码如下:
int n5 = r.nextInt(100);
int m; //结果数字
if(n5 < 55){ //55个数字的区间,55%的几率
m = 1;
}else if(n5 < 95){//[55,95),40个数字的区间,40%的几率
m = 2;
}else{
m = 3;
}
因为每个数字的几率都是1%,则任意55个数字的区间的几率就是55%,为了代码方便书写,这里使用[0,55)区间的所有整数,后续的原理一样。
当然,这里的代码可以简化,因为几率都是5%的倍数,所以只要以5%为基础来控制几率即可,下面是简化的代码实现:
int n6 = r.nextInt(20);
int m1;
if(n6 < 11){
m1 = 1;
}else if(n6 < 19){
m1= 2;
}else{
m1 = 3;
}
在程序内部,几率的逻辑就可以按照上面的说明进行实现。
4、其它问题
a、相同种子数Random对象问题
前面介绍过,相同种子数的Random对象,相同次数生成的随机数字是完全相同的,下面是测试的代码:
Random r1 = new Random(10);
Random r2 = new Random(10);
for(int i = 0;i < 2;i++){
System.out.println(r1.nextInt());
System.out.println(r2.nextInt());
}
在该代码中,对象r1和r2使用的种子数都是10,则这两个对象相同次数生成的随机数是完全相同的。
如果想避免出现随机数字相同的情况,则需要注意,无论项目中需要生成多少个随机数字,都只使用一个Random对象即可。
b、关于Math类中的random方法
其实在Math类中也有一个random方法,该random方法的工作是生成一个[0,1.0)区间的随机小数。
通过阅读Math类的源代码可以发现,Math类中的random方法就是直接调用Random类中的nextDouble方法实现的。
只是random方法的调用比较简单,所以很多程序员都习惯使用Math类的random方法来生成随机数字。