R语言可视化(十九):峰峦图绘制

19. 峰峦图绘制


清除当前环境中的变量

rm(list=ls())

设置工作目录

setwd("C:/Users/Dell/Desktop/R_Plots/19ridge/")

使用ggridges包绘制峰峦图

library(ggridges)
library(ggplot2)
## 
## Attaching package: 'ggplot2'
## The following object is masked from 'package:ggridges':
## 
##     scale_discrete_manual

# 查看示例数据
head(iris)
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1          5.1         3.5          1.4         0.2  setosa
## 2          4.9         3.0          1.4         0.2  setosa
## 3          4.7         3.2          1.3         0.2  setosa
## 4          4.6         3.1          1.5         0.2  setosa
## 5          5.0         3.6          1.4         0.2  setosa
## 6          5.4         3.9          1.7         0.4  setosa

# 使用geom_density_ridgesh函数绘制峰峦图
ggplot(iris, aes(x=Sepal.Length, y=Species, fill=Species)) +
  geom_density_ridges()
image.png
# 设置分面
ggplot(iris, aes(x = Sepal.Length, y = Species)) + 
  geom_density_ridges(scale = 1) + 
  facet_wrap(~Species)
image.png
# 添加jitter散点
ggplot(iris, aes(x=Sepal.Length, y=Species)) +
  geom_density_ridges(jittered_points = TRUE) + 
  theme_ridges()
image.png
# 更改散点的位置
ggplot(iris, aes(x=Sepal.Length, y=Species, fill=Species)) +
  geom_density_ridges(
    jittered_points = TRUE, 
    position = "raincloud",
    alpha = 0.8, scale = 0.5
  )
image.png
# 设置散点的大小和颜色
ggplot(iris, aes(x = Sepal.Length, y = Species, fill = Species)) +
  geom_density_ridges(
    aes(point_shape = Species, point_fill = Species, point_size = Petal.Length), 
    alpha = .2, point_alpha = 1, jittered_points = TRUE
  ) +
  scale_point_color_hue(l = 40) + 
  scale_point_size_continuous(range = c(0.5, 4)) +
  scale_discrete_manual(aesthetics = "point_shape", values = c(21, 22, 23))
image.png
library(viridis)
## Loading required package: viridisLite

head(lincoln_weather)
## # A tibble: 6 x 24
##   CST   `Max Temperatur~ `Mean Temperatu~ `Min Temperatur~ `Max Dew Point ~
##   <chr>            <int>            <int>            <int>            <int>
## 1 2016~               37               24               11               19
## 2 2016~               41               23                5               22
## 3 2016~               37               23                8               23
## 4 2016~               30               17                4               24
## 5 2016~               38               29               19               29
## 6 2016~               34               33               32               33
## # ... with 19 more variables: `Mean Dew Point [F]` <int>, `Min Dewpoint
## #   [F]` <int>, `Max Humidity` <int>, `Mean Humidity` <int>, `Min
## #   Humidity` <int>, `Max Sea Level Pressure [In]` <dbl>, `Mean Sea Level
## #   Pressure [In]` <dbl>, `Min Sea Level Pressure [In]` <dbl>, `Max
## #   Visibility [Miles]` <int>, `Mean Visibility [Miles]` <int>, `Min
## #   Visibility [Miles]` <int>, `Max Wind Speed [MPH]` <int>, `Mean Wind
## #   Speed[MPH]` <int>, `Max Gust Speed [MPH]` <int>, `Precipitation
## #   [In]` <chr>, CloudCover <int>, Events <chr>, `WindDir
## #   [Degrees]` <int>, Month <fct>

ggplot(lincoln_weather, aes(x = `Mean Temperature [F]`, y = `Month`, fill = ..x..)) +
  geom_density_ridges_gradient(scale = 3, rel_min_height = 0.01, gradient_lwd = 1.) +
  scale_x_continuous(expand = c(0.01, 0)) +
  scale_y_discrete(expand = c(0.01, 0)) +
  scale_fill_viridis(name = "Temp. [F]", option = "C") +
  labs(
    title = 'Temperatures in Lincoln NE',
    subtitle = 'Mean temperatures (Fahrenheit) by month for 2016\nData: Original CSV from the Weather Underground'
  ) +
  theme_ridges(font_size = 13, grid = TRUE) + theme(axis.title.y = element_blank())
image.png
sessionInfo()
## R version 3.6.0 (2019-04-26)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 18363)
## 
## Matrix products: default
## 
## locale:
## [1] LC_COLLATE=Chinese (Simplified)_China.936 
## [2] LC_CTYPE=Chinese (Simplified)_China.936   
## [3] LC_MONETARY=Chinese (Simplified)_China.936
## [4] LC_NUMERIC=C                              
## [5] LC_TIME=Chinese (Simplified)_China.936    
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
## [1] viridis_0.5.1     viridisLite_0.3.0 ggplot2_3.2.0     ggridges_0.5.1   
## 
## loaded via a namespace (and not attached):
##  [1] Rcpp_1.0.5       pillar_1.4.2     compiler_3.6.0   plyr_1.8.4      
##  [5] tools_3.6.0      digest_0.6.20    evaluate_0.14    tibble_2.1.3    
##  [9] gtable_0.3.0     pkgconfig_2.0.2  rlang_0.4.7      cli_1.1.0       
## [13] yaml_2.2.0       xfun_0.8         gridExtra_2.3    withr_2.1.2     
## [17] dplyr_0.8.3      stringr_1.4.0    knitr_1.23       vctrs_0.3.2     
## [21] grid_3.6.0       tidyselect_0.2.5 glue_1.3.1       R6_2.4.0        
## [25] fansi_0.4.0      rmarkdown_1.13   purrr_0.3.2      magrittr_1.5    
## [29] scales_1.0.0     htmltools_0.3.6  assertthat_0.2.1 colorspace_1.4-1
## [33] labeling_0.3     utf8_1.1.4       stringi_1.4.3    lazyeval_0.2.2  
## [37] munsell_0.5.0    crayon_1.3.4
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351