动态规划 最长公共子序列 过程图解

基本概念

首先需要科普一下,最长公共子序列(longest common sequence)和最长公共子串(longest common substring)不是一回事儿。

什么是子序列呢?

这里给出一个例子:有两个母串
cnblogs
belong
比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与母串保持一致,我们将其称为公共子序列。最长公共子序列(Longest Common Subsequence,LCS),顾名思义,是指在所有的子序列中最长的那一个。

什么是子串呢?

子串是要求更严格的一种子序列,要求在母串中连续地出现
在上述例子的中,最长公共子序列为blog(cnblogs,belong),最长公共子串为lo(cnblogs, belong)。

给一个图再解释一下:


如上图,给定的字符序列: {a,b,c,d,e,f,g,h},它的子序列示例: {a,c,e,f} 即元素b,d,g,h被去掉后,保持原有的元素序列所得到的结果就是子序列。同理,{a,h},{c,d,e}等都是它的子序列。
它的子串示例:{c,d,e,f} 即连续元素c,d,e,f组成的串是给定序列的子串。同理,{a,b,c,d},{g,h}等都是它的子串。

这个问题说明白后,最长公共子序列(以下都简称LCS)就很好理解了。
给定序列s1={1,3,4,5,6,7,7,8},s2={3,5,7,4,8,6,7,8,2},s1和s2的相同子序列,且该子序列的长度最长,即是LCS。
s1和s2的其中一个最长公共子序列是 {3,4,6,7,8}

动态规划

求解LCS问题,不能使用暴力搜索方法。一个长度为n的序列拥有 2的n次方个子序列,它的时间复杂度是指数阶,太恐怖了。解决LCS问题,需要借助动态规划的思想。

动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。为了避免大量的重复计算,节省时间,我们引入一个数组,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法。

特征分析

解决LCS问题,需要把原问题分解成若干个子问题,所以需要刻画LCS的特征。

设A=“a0,a1,…,am”,B=“b0,b1,…,bn”,且Z=“z0,z1,…,zk”为它们的最长公共子序列。不难证明有以下性质:
如果am=bn,则zk=am=bn,且“z0,z1,…,z(k-1)”是“a0,a1,…,a(m-1)”和“b0,b1,…,b(n-1)”的一个最长公共子序列;
如果am!=bn,则若zk!=am,蕴涵“z0,z1,…,zk”是“a0,a1,…,a(m-1)”和“b0,b1,…,bn”的一个最长公共子序列;
如果am!=bn,则若zk!=bn,蕴涵“z0,z1,…,zk”是“a0,a1,…,am”和“b0,b1,…,b(n-1)”的一个最长公共子序列。

有些同学,一看性质就容易晕菜,所以我给出一个图来让这些同学理解一下:


以我在第1小节举的例子(S1={1,3,4,5,6,7,7,8}和S2={3,5,7,4,8,6,7,8,2}),并结合上图来说:

假如S1的最后一个元素 与 S2的最后一个元素相等,那么S1和S2的LCS就等于 {S1减去最后一个元素} 与 {S2减去最后一个元素} 的 LCS 再加上 S1和S2相等的最后一个元素。

假如S1的最后一个元素 与 S2的最后一个元素不等(本例子就是属于这种情况),那么S1和S2的LCS就等于 : {S1减去最后一个元素} 与 S2 的LCS, {S2减去最后一个元素} 与 S1 的LCS 中的最大的那个序列。

递归公式

假设Z=<z1,z2,⋯,zk>是X与Y的LCS, 我们观察到
如果Xm=Yn,则Zk=Xm=Yn,有Zk−1是Xm−1与Yn−1的LCS;
如果Xm≠Yn,则Zk是Xm与Yn−1的LCS,或者是Xm−1与Yn的LCS。

因此,求解LCS的问题则变成递归求解的两个子问题。但是,上述的递归求解的办法中,重复的子问题多,效率低下。改进的办法——用空间换时间,用数组保存中间状态,方便后面的计算。这就是动态规划(DP)的核心思想了。
DP求解LCS
用二维数组c[i][j]记录串x1x2⋯xi与y1y2⋯yj的LCS长度,则可得到状态转移方程

计算LCS的长度的图解过程

以s1={1,3,4,5,6,7,7,8},s2={3,5,7,4,8,6,7,8,2}为例。我们借用《算法导论》中的推导图:



图中的空白格子需要填上相应的数字(这个数字就是c[i,j]的定义,记录的LCS的长度值)。填的规则依据递归公式,简单来说:如果横竖(i,j)对应的两个元素相等,该格子的值 = c[i-1,j-1] + 1。如果不等,取c[i-1,j] 和 c[i,j-1]的最大值。首先初始化该表:



然后,一行一行地从上往下填;
S1的元素3 与 S2的元素3 相等,所以 c[2,1] = c[1,0] + 1
S1的元素3 与 S2的元素3 相等,所以 c[2,1] = c[1,0] + 1

S1的元素3 与 S2的元素5 不等,c[2,2] =max(c[1,2],c[2,1]),图中c[1,2] 和 c[2,1] 背景色为浅黄色。

继续填充:



中间几行填写规则不变,直接跳到最后一行:

至此,该表填完。根据性质,c[8,9] = S1 和 S2 的 LCS的长度,即为5。

构造LCS

本文S1和S2的最LCS并不是只有1个,本文并不是着重讲输出两个序列的所有LCS,只是介绍如何通过上表,输出其中一个LCS。

我们根据递归公式构建了上表,我们将从最后一个元素c[8][9]倒推出S1和S2的LCS。

c[8][9] = 5,且S1[8] != S2[9],所以倒推回去,c[8][9]的值来源于c[8][8]的值(因为c[8][8] > c[7][9])。

c[8][8] = 5, 且S1[8] = S2[8], 所以倒推回去,c[8][8]的值来源于 c[7][7]。

以此类推,如果遇到S1[i] != S2[j] ,且c[i-1][j] = c[i][j-1] 这种存在分支的情况,这里请都选择一个方向(之后遇到这样的情况,也选择相同的方向)。

第一种结果为:

这就是倒推回去的路径,棕色方格为相等元素,即LCS = {3,4,6,7,8},这是其中一个结果。

如果如果遇到S1[i] != S2[j] ,且c[i-1][j] = c[i][j-1] 这种存在分支的情况,选择另一个方向,会得到另一个结果。

即LCS ={3,5,7,7,8}。

关于时间复杂度

构建c[i][j]表需要Θ(mn),输出1个LCS的序列需要Θ(m+n)。

代码实现:

package com.smart.algorithm.str;

/**
 * Created by fc.w on 2018/05/09
 */
public class LCS {

    public static int lcs(String s1, String s2) {
        int n = s1.length();
        int m = s2.length();
        int[][] c = new int[n+1][m+1];

        for (int i = 0; i <= n; i++) {
            for (int j = 0; j <= m; j++) {
                if (i == 0 || j == 0) {
                    c[i][j] = 0;
                } else if (s1.charAt(i - 1) == s2.charAt(j - 1)) {
                    c[i][j] = c[i - 1][j - 1] + 1;
                } else {
                    c[i][j] = Math.max(c[i - 1][j], c[i][j - 1]);
                }
            }
        }
        return c[n][m];
    }

    public static void main(String[] args) {
        String strOne = "abcdefg";
        String strTwo = "adefgwgeweg";
        System.out.println(lcs(strOne, strTwo));
    }

}

参考:
https://blog.csdn.net/hrn1216/article/details/51534607
https://blog.csdn.net/u012102306/article/details/53184446

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容