一、前言
随着项目不断壮大,OOM(Out Of Memory)成为奔溃统计平台上的疑难杂症之一,大部分业务开发人员对于线上OOM问题一般都是暂不处理,一方面是因为OOM问题没有足够的log,无法在短期内分析解决,另一方面可能是忙于业务迭代、身心疲惫,没有精力去研究OOM的解决方案。
这篇文章将以线上OOM问题作为切入点,介绍常见的OOM类型、OOM的原理、大厂OOM优化黑科技、以及主流的OOM监控方案。
文章较长,请备好小板凳~
二、OOM问题分类
很多人对于OOM的理解就是Java虚拟机内存不足,但通过线上OOM问题分析,OOM可以大致归为以下3类:
- 线程数太多
- 打开太多文件
- 内存不足
接下来将分别围绕这三类问题进行展开分析~
三、线程数太多
3.1 报错信息
pthread_create (1040KB stack) failed: Out of memory
这个是典型的创建新线程触发的OOM问题
[图片上传失败...(image-aaf4a3-1696662793994)]
3.2 源码分析
pthread_create触发的OOM异常,源码(Android 9)位置如下: androidxref.com/9.0.0_r3/xr…
void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
...
pthread_create_result = pthread_create(...)
//创建线程成功
if (pthread_create_result == 0) {
return;
}
//创建线程失败
...
{
std::string msg(child_jni_env_ext.get() == nullptr ?
StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
StringPrintf("pthread_create (%s stack) failed: %s",
PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
ScopedObjectAccess soa(env);
soa.Self()->ThrowOutOfMemoryError(msg.c_str());
}
}
pthread_create
里面会调用Linux内核创建线程,那什么情况下会创建线程失败呢?
查看系统对每个进程的线程数限制
cat /proc/sys/kernel/threads-max
[图片上传失败...(image-e36ab4-1696662793994)]
不同设备的threads-max限制是不一样的,有些厂商的低端机型threads-max比较小,容易出现此类OOM问题。
查看当前进程运行的线程数
cat proc/{pid}/status
[图片上传失败...(image-e53c8-1696662793994)]
当线程数超过/proc/sys/kernel/threads-max
中规定的上限时就会触发OOM。
既然系统对每个进程的线程数有限制,那么解决这个问题的关键就是尽可能降低线程数的峰值。
3.3 线程优化
3.3.1 禁用 new Thread
解决线程过多问题,传统的方案是禁止使用new Thread
,统一使用线程池,但是一般很难人为控制, 可以在代码提交之后触发自动检测,有问题则通过邮件通知对应开发人员。
不过这种方式存在两个问题:
- 无法解决老代码的
new Thread
; - 对于第三方库无法控制。
3.3.2 无侵入性的new Thread 优化
Java层的Thread
只是一个普通的对象,只有调用了start
方法,才会调用native 层去创建线程,
所以理论上我们可以自定义Thread,重写start方法,不去启动线程,而是将任务放到线程池中去执行,为了做到无侵入性,需要在编译期通过字节码插桩的方式,将所有new Thread
字节码都替换成new 自定义Thread
。
步骤如下:
1、创建一个Thread
的子类叫ShadowThread
吧,重写start方法,调用自定义的线程池CustomThreadPool
来执行任务;
public class ShadowThread extends Thread {
@Override
public synchronized void start() {
Log.i("ShadowThread", "start,name="+ getName());
CustomThreadPool.THREAD_POOL_EXECUTOR.execute(new MyRunnable(getName()));
}
class MyRunnable implements Runnable {
String name;
public MyRunnable(String name){
this.name = name;
}
@Override
public void run() {
try {
ShadowThread.this.run();
Log.d("ShadowThread","run name="+name);
} catch (Exception e) {
Log.w("ShadowThread","name="+name+",exception:"+ e.getMessage());
RuntimeException exception = new RuntimeException("threadName="+name+",exception:"+ e.getMessage());
exception.setStackTrace(e.getStackTrace());
throw exception;
}
}
}
}
2、在编译期,hook 所有new Thread
字节码,全部替换成我们自定义的ShadowThread
,这个难度应该不大,按部就班,
我们先确认new Thread
和new ShadowThread
对应字节码差异,可以安装一个ASM Bytecode Viewer插件,如下所示
[图片上传失败...(image-2436bd-1696662793994)]
通过字节码修改,你可以简单理解为做如下替换:
[图片上传失败...(image-656532-1696662793994)]
3、由于将任务放到线程池去执行,假如线程奔溃了,我们不知道是哪个线程出问题,所以自定义ShadowThread
中的内部类MyRunnable
的作用是:在线程出现异常的时候,将异常捕获,还原它的名字,重新抛出一个信息更全的异常。
测试代码
private fun testThreadCrash() {
Thread {
val i = 9 / 0
}.apply {
name = "testThreadCrash"
}.start()
}
开启一个线程,然后触发奔溃,堆栈信息如下:
[图片上传失败...(image-f85983-1696662793994)]
可以看到原本的new Thread
已经被优化成了CustomThreadPool
线程池调用,并且奔溃的时候不用担心找不到线程是哪里创建的,会还原线程名。
当然这种方式有一个小问题,应用正常运行的情况下,如果你想要收集所有线程信息,那么线程名可能不太准确,因为通过new Thread 去创建线程,已经被替换成线程池调用了,获取到的线程名是线程池中的线程的名字
数据对比
同个场景简单测试了一下new Thread
优化前后线程数峰值对比:
线程数峰值(优化前) | 线程数峰值(优化后) | 降低最大线程数 |
---|---|---|
337 | 314 | 23 |
对于不同App,优化效果会有一些不同,不过可以看到这个优化确实是有效的。
3.3.3 无侵入的线程池优化
随着项目引入的SDK越来越多,绝大部分SDK内部都会使用自己的线程池做异步操作,
线程池的参数如果设置不对,核心线程空闲的时候没有释放,会使整体的线程数量处于较高位置。
线程池几个参数:
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory) {
this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
threadFactory, defaultHandler);
}
-
corePoolSize:核心线程数量。核心线程默认情况下即使空闲也不会释放,除非设置
allowCoreThreadTimeOut
为true。 - maximumPoolSize:最大线程数量。任务数量超过核心线程数,就会将任务放到队列中,队列满了,就会启动非核心线程执行任务,线程数超过这个限制就会走拒绝策略;
- keepAliveTime:空闲线程存活时间
- unit:时间单位
- workQueue:队列。任务数量超过核心线程数,就会将任务放到这个队列中,直到队列满,就开启新线程,执行队列第一个任务。
- threadFactory:线程工厂。实现new Thread方法创建线程
通过线程池参数,我们可以找到优化点如下:
- 限制空闲线程存活时间,
keepAliveTime
设置小一点,例如1-3s; - 允许核心线程在空闲时自动销毁
executor.allowCoreThreadTimeOut(true)
如何做呢?为了做到无侵入性,依然采用ASM操作字节码,跟new Thread
的替换基本同理
在编译期,通过ASM,做如下几个操作:
- 将调用
Executors
类的静态方法替换为自定义ShadowExecutors
的静态方法,设置executor.allowCoreThreadTimeOut(true)
; - 将调用
ThreadPoolExecutor
类的构造方法替换为自定义ShadowThreadPoolExecutor
的静态方法,设置executor.allowCoreThreadTimeOut(true)
; - 可以在 Application 类的 <clinit>() 中调用我们自定义的静态方法
ShadowAsyncTask.optimizeAsyncTaskExecutor()
来修改 AsyncTask 的线程池参数,调用executor.allowCoreThreadTimeOut(true)
;
3.4 线程监控
假如线程优化后还存在创建线程OOM问题,那我们就需要监控是否存在线程泄漏的情况。
3.4.1 线程泄漏监控
主要监控native线程的几个生命周期方法:pthread_create、pthread_detach、pthread_join、pthread_exit
。
- hook 以上几个方法,用于记录线程的生命周期和堆栈,名称等信息;
- 当发现一个joinable的线程在没有detach或者join的情况下,执行了pthread_exit,则记录下泄露线程信息;
- 在合适的时机,上报线程泄露信息。
linux线程中,pthread有两种状态joinable状态和unjoinable状态。joinable状态下,当线程函数自己返回退出时或pthread_exit时都不会释放线程所占用堆栈和线程描述符。只有当你调用了pthread_join之后这些资源才会被释放,需要main函数或者其他线程去调用pthread_join函数。
3.4.2 线程上报
当监控到线程有异常的时候,我们可以收集线程信息,上报到后台进行分析。
收集线程信息代码如下:
private fun dumpThreadIfNeed() {
val threadNames = runCatching { File("/proc/self/task").listFiles() }
.getOrElse {
return@getOrElse emptyArray()
}
?.map {
runCatching { File(it, "comm").readText() }.getOrElse { "failed to read $it/comm" }
}
?.map {
if (it.endsWith("\n")) it.substring(0, it.length - 1) else it
}
?: emptyList()
Log.d("TAG", "dumpThread = " + threadNames.joinToString(separator = ","))
}
接下来介绍打开太多文件导致的OOM问题
四、打开太多文件
4.1 错误信息
E/art: ashmem_create_region failed for 'indirect ref table': Too many open files
Java.lang.OutOfMemoryError: Could not allocate JNI Env
这个问题跟系统、厂商关系比较大
4.2 系统限制
Android是基于Linux内核,/proc/pid/limits
描述着linux系统对每个进程的一些资源限制,
如下图是一台Android 6.0的设备,Max open files的限制是1024
如果没有root权限,可以通过ulimit -n
命令查看Max open files,结果是一样的
ulimit -n
Linux 系统一切皆文件,进程每打开一个文件就会产生一个文件描述符fd(记录在/proc/pid/fd下面)
cd /proc/10654/fd
ls
这些fd文件都是链接文件,通过 ls -l
可以查看其对应的真实文件路径
当fd的数目达到Max open files规定的数目,就会触发Too many open files
的奔溃,这种奔溃在低端机上比较容易复现。
知道了文件描述符这玩意后,看看怎么优化~
4.2 文件描述符优化
对于打开文件数太多的问题,盲目优化其实无从下手,总体的方案是监控为主。
通过如下代码可以查看当前进程的fd信息
private fun dumpFd() {
val fdNames = runCatching { File("/proc/self/fd").listFiles() }
.getOrElse {
return@getOrElse emptyArray()
}
?.map { file ->
runCatching { Os.readlink(file.path) }.getOrElse { "failed to read link ${file.path}" }
}
?: emptyList()
Log.d("TAG", "dumpFd: size=${fdNames.size},fdNames=$fdNames")
}
4.3 文件描述符监控
监控策略: 当fd数大于1000个,或者fd连续递增超过50个,就触发fd收集,将fd对应的文件路径上报到后台。
这里模拟一个bug,打开一个文件多次不关闭,通过dumpFd,可以看到很多重复的文件名,进而大致定位到问题。
[图片上传失败...(image-b8da22-1696662793994)]
当怀疑某个文件有问题之后,我们还需要知道这个文件在哪创建,是谁创建的,这个就涉及到IO监控~
4.4 IO监控
4.4.1 监控内容
监控完整的IO操作,包括open、read、write、close
open:获取文件名、fd、文件大小、堆栈、线程
read/write:获取文件类型、读写次数、总大小,使用buffer大小、读写总耗时
close:打开文件总耗时、最大连续读写时间
4.4.2 Java监控方案:
以Android 6.0 源码为例,FileInputStream
的调用链如下
java : FileInputStream -> IoBridge.open -> Libcore.os.open ->
BlockGuardOs.open -> Posix.open
Libcore.java是一个不错的hook点
package libcore.io;
public final class Libcore {
private Libcore() { }
public static Os os = new BlockGuardOs(new Posix());
}
我们可以通过反射获取到这个Os
变量,它是一个接口类型,里面定义了open、read、write、close
方法,具体实现在BlockGuardOs里面。
// 反射获得静态变量
Class<?> clibcore = Class.forName("libcore.io.Libcore");
Field fos = clibcore.getDeclaredField("os");
通过动态代理的方式,在它所有IO方法前后加入插桩代码来统计IO信息
// 动态代理对象
Proxy.newProxyInstance(cPosix.getClassLoader(), getAllInterfaces(cPosix), this);
beforeInvoke(method, args, throwable);
result = method.invoke(mPosixOs, args);
afterInvoke(method, args, result);
此方案缺点如下:
- 性能差,IO调用频繁,使用动态代理和Java的字符串操作,导致性能较差,无法达到线上使用标准
- 无法监控Native代码,这个也是比较重要的
- 兼容性差:需要根据Android 版本做适配,特别是Android P的非公开API限制
4.4.3 Native监控方案
Native Hook方案的核心从 libc.so
中的这几个函数中选定 Hook 的目标函数
int open(const char *pathname, int flags, mode_t mode);
ssize_t read(int fd, void *buf, size_t size);
ssize_t write(int fd, const void *buf, size_t size); write_cuk
int close(int fd);
我们需要选择一些有调用上面几个方法的 library,例如选择libjavacore.so、libopenjdkjvm.so、libopenjdkjvm.so
,可以覆盖到所有的 Java 层的 I/O 调用。
不同版本的 Android 系统实现有所不同,在 Android 7.0 之后,我们还需要替换下面这三个方法。
open64
__read_chk
__write_chk
native hook 框架目前使用比较广泛的是爱奇艺的xhook ,以及它的改进版,字节跳动的bhook。
具体的native IO监控代码,可以参考 Matrix-IOCanary,内部使用的是xhook框架。
关于IO涉及到的知识非常多,后面有时间可以单独整理一篇文章。
接下来看看最后一种OOM类型~
五、内存不足
5.1 堆栈信息
[图片上传失败...(image-ee4a61-1696662793994)]
这种是最常见的OOM,Java堆内存不足,512M都不够玩~
发生此问题的大部分设备都是Android 7.0,高版本也有,不过相对较少。
5.2 重温JVM内存结构
JVM在运行时,将内存划分为以下5个部分
- 方法区:存放静态变量、常量、即时编译代码;
- 程序计数器:线程私有,记录当前执行的代码行数,方便在cpu切换到其它线程再回来的时候能够不迷路;
- Java虚拟机栈:线程私有,一个Java方法开始和结束,对应一个栈帧的入栈和出栈,栈帧里面有局部变量表、操作数栈、返回地址、符号引用等信息;
- 本地方法栈:线程私有,跟Java虚拟机栈的区别在于 这个是针对native方法;
- 堆:绝大部分对象创建都在堆分配内存
内存不足导致的OOM,一般都是由于Java堆内存不足,绝大部分对象都是在堆中分配内存,除此之外,大数组、以及Android3.0-7.0的Bitmap像素数据,都是存放在堆中。
基于这个结论,关于Java堆内存不足导致的OOM问题,优化方案主要是图片加载优化、内存泄漏监控。
5.3 图片加载优化
5.3.1 常规的图片优化方式
- 分析了主流图片库Glide和Fresco的优缺点,以及使用场景;
- 分析了设计一个图片加载框架需要考虑的问题;
- 防止图片占用内存过多导致OOM的三个方式:软引用、onLowMemory、Bitmap 像素存储位置
这篇文章现在来看还是有点意义的,其中的原理部分还没过时,不过技术更新迭代,常规的优化方式已经不太够了,长远考虑,可以做图片自动压缩、大图自动检测和告警。
5.3.2 无侵入性自动压缩图片
针对图片资源,设计师往往会追求高清效果,忽略图片大小,一般的做法是拿到图后手动压缩一下,这种手动的操作完全看个人修养。
无侵入性自动压缩图片,主流的方案是利用Gradle 的Task原理,在编译过程中,mergeResourcesTask
这个任务是将所以aar、module的资源进行合并,我们可以在mergeResourcesTask
之后可以拿到所有资源文件,具体做法:
- 在
mergeResourcesTask
这个任务后面,增加一个图片处理的Task,拿到所有资源文件; - 拿到所有资源文件后,判断如果是图片文件,则通过压缩工具进行压缩,压缩后如果图片有变小,就将压缩过的图片替换掉原图。
可以简单理解如下: [图片上传失败...(image-48a940-1696662793994)]
5.4 大图监控
5.3.2 自动压缩图片只是针对本地资源,而对于网络图片,如果加载的时候没有压缩,那么内存占用会比较大,这种情况就需要监控了。
5.4.1 从图片框架侧监控
很多App内部可能使用了多个图片库,例如Glide、Picasso、Fresco、ImageLoader、Coil
,如果想监控某个图片框架, 那么我们需要熟读源码,找到hook点。
对于Glide,可以通过hook SingleRequest
,它里面有个requestListeners
,我们可以注册一个自己的监听,图片加载完做一个大图检测。
其它图片框架,同理也是先找到hook点,然后进行类似的hook操作就可以,
5.4.2 从ImageView侧监控
5.4.1 是从图片加载框架侧监控大图,假如项目中使用到的图片加载框架太多,有些第三方SDK内部可能自己搞了图片加载,
这种情况下我们可以从ImageView
控件侧做监控,监听setImageDrawable
等方法,计算图片大小如果大于控件本身大小,debug包可以弹窗提示需要修改。
方案如下:
- 自定义ImageView,重写
setImageDrawable、setImageBitmap、setImageResource、setBackground、setBackgroundResource
这几个方法,在这些方法里面,检测Drawable大小; - 编译期,修改字节码,将所有
ImageView
的创建都替换成自定义的ImageView
; - 为了不影响主线程,可以使用
IdleHandler
,在主线程空闲的时候再检测;
最终是希望当检测到大图的时候,debug环境能够弹窗提示开发进行修改,release环境可以上报后台。
debug如下效果:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qyrJo3Ih-1651225474031)(https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/b9133dfddf514d6b8519a21c29044089~tplv-k3u1fbpfcp-zoom-in-crop-mark:1956:0:0:0.image?)]
当然这种方案有个缺点:不能获取到图片url。
图片优化告一段落,接下来看看内存泄漏~
5.5 内存泄漏监控演进
LeakCanary
关于内存泄漏,大家可能都知道LeakCanary,只要添加一个依赖
debugImplementation 'com.squareup.leakcanary:leakcanary-android:2.8.1'
,
就能实现自动检测和分析内存泄漏,并发出一个通知显示内存泄漏详情信息。
LeakCanary只能在debug环境使用,因为它是在当前进程dump内存快照,Debug.dumpHprofData(path);
会冻结当前进程一段时间,整个 APP 会卡死约5~15s,低端机上可能要几十秒的时间。
ResourceCanary
微信对LeakCanary做了一些改造,将检测和分析分离,客户端只负责检测和dump内存镜像文件,文件裁剪后上报到服务端进行分析。
具体可以看这篇文章Matrix ResourceCanary -- Activity 泄漏及Bitmap冗余检测
KOOM
不管是LeakCanary 还是 ResourceCanary,他们都只能在线下使用,而线上内存泄漏监控方案,目前KOOM的方案比较完善,下面我将基于KOOM分析线上内存泄漏监控方案的核心流程。
5.6 线上内存泄漏监控方案
基于KOOM源码分析
5.6.1 检测时机
- 间隔5s检测一次
- 触发内存镜像采集的条件:
- 当内存使用率达到80%以上
//->OOMMonitorConfig
private val DEFAULT_HEAP_THRESHOLD by lazy {
val maxMem = SizeUnit.BYTE.toMB(Runtime.getRuntime().maxMemory())
when {
maxMem >= 512 - 10 -> 0.8f
maxMem >= 256 - 10 -> 0.85f
else -> 0.9f
}
}
- 两次检测时间内(例如5s内),内存使用率增加5%
5.6.2 内存镜像采集
我们知道LeakCanary检测内存泄漏,不能用于线上,是因为它dump内存镜像是在当前进程进行操作,会冻结App一段时间。
所以,作为线上OOM监控,dump内存镜像需要单独开一个进程。
整体的策略是:
虚拟机supend->fork虚拟机进程->虚拟机resume->dump内存镜像
的策略。
dump内存镜像的源码如下:
//->ForkJvmHeapDumper
public boolean dump(String path) {
...
boolean dumpRes = false;
try {
//1、通过fork函数创建子进程,会返回两次,通过pid判断是父进程还是子进程
int pid = suspendAndFork();
MonitorLog.i(TAG, "suspendAndFork,pid="+pid);
if (pid == 0) {
//2、子进程返回,dump内存操作,dump内存完成,退出子进程
Debug.dumpHprofData(path);
exitProcess();
} else if (pid > 0) {
// 3、父进程返回,恢复虚拟机,将子进程的pid传过去,阻塞等待子进程结束
dumpRes = resumeAndWait(pid);
MonitorLog.i(TAG, "notify from pid " + pid);
}
}
return dumpRes;
}
注释1:父进程调用native方法挂起虚拟机,并且创建子进程;
注释2:子进程创建成功,执行Debug.dumpHprofData
,执行完后退出子进程;
注释3:得知子进程创建成功后,父进程恢复虚拟机,解除冻结,并且当前线程等待子进程结束。
注释1源码如下:
// ->native_bridge.cpp
pid_t HprofDump::SuspendAndFork() {
//1、暂停VM,不同Android版本兼容
if (android_api_ < __ANDROID_API_R__) {
suspend_vm_fnc_();
}
...
//2,fork子进程,通过返回值可以判断是主进程还是子进程
pid_t pid = fork();
if (pid == 0) {
// Set timeout for child process
alarm(60);
prctl(PR_SET_NAME, "forked-dump-process");
}
return pid;
}
注释3源码如下:
//->hprof_dump.cpp
bool HprofDump::ResumeAndWait(pid_t pid) {
//1、恢复虚拟机,兼容不同Android版本
if (android_api_ < __ANDROID_API_R__) {
resume_vm_fnc_();
}
...
int status;
for (;;) {
//2、waitpid,等待子进程结束
if (waitpid(pid, &status, 0) != -1 || errno != EINTR) {
//进程异常退出
if (!WIFEXITED(status)) {
ALOGE("Child process %d exited with status %d, terminated by signal %d",
pid, WEXITSTATUS(status), WTERMSIG(status));
return false;
}
return true;
}
return false;
}
}
这里主要是利用Linux的waitpid
函数,主进程可以等待子进程dump结束,然后再返回执行内存镜像文件分析操作。
5.6.3 内存镜像分析
前面一步已经通过Debug.dumpHprofData(path)
拿到内存镜像文件,接下来就开启一个后台服务来处理
//->HeapAnalysisService
override fun onHandleIntent(intent: Intent?) {
...
kotlin.runCatching {
//1、通过shark将hprof文件转换成HeapGraph对象
buildIndex(hprofFile)
}
...
//2、将设备信息封装成json
buildJson(intent)
kotlin.runCatching {
//3、过滤泄漏对象,有几个规制
filterLeakingObjects()
}
...
kotlin.runCatching {
// 4、gcRoot是否可达,判断内存泄漏
findPathsToGcRoot()
}
...
//5、泄漏信息填充到json中,然后结束了
fillJsonFile(jsonFile)
//通知主进程内存泄漏分析成功
resultReceiver?.send(AnalysisReceiver.RESULT_CODE_OK, null)
//这个服务是在单独进程,分析完就退出
System.exit(0);
}
内存镜像分析的流程如下:
- 通过
shark
这个开源库将hprof文件转换成HeapGraph
对象 - 收集设备信息,封装成json,现场信息很重要
-
filterLeakingObjects
:过滤出泄漏的对象,有一些规制,例如已经destroyed和finished的activity、fragment manager为空的fragment、已经destroyed的window等。 -
findPathsToGcRoot
:内存泄漏的对象,查找其到GcRoot
的路径,通过这一步就可以揪出内存泄漏的原因 -
fillJsonFile
:格式化输出内存泄漏信息
小结
线上Java内存泄漏监控方案分析,这里小结一下:
- 挂起当前进程,然后通过
fork
创建子进程; -
fork
会返回两次,一次是子进程,一次是父进程,通过返回的pid可以判断是子进程还是父进程; - 如果是父进程返回,则通过
resumeAndWait
恢复进程,然后当前线程阻塞等待子进程结束; - 如果子进程返回,通过
Debug.dumpHprofData(path)
读取内存镜像信息,这个会比较耗时,执行结束就退出子进程; - 子进程退出,父进程的
resumeAndWait
就会返回,这时候就可以开启一个服务,后台分析内存泄漏情况,这块跟LeakCanary
的分析内存泄漏原理基本差不多。
不画图了,结合源码看应该可以理解。
5.7 native内存泄漏监控
对于Java内存泄漏监控,线下我们可以使用LeakCanary
、线上可以使用KOOM
,而对于native内存泄漏应该如何监控呢?
方案如下:
首先要了解native层
申请内存的函数:malloc、realloc、calloc、memalign、posix_memalign
释放内存的函数:free
- hook申请内存和释放内存的函数
分配内存的时候,收集堆栈、内存大小、地址、线程等信息,存放到map中,在释放内存的时候从map中移除。
那怎么判断native内存泄漏呢?
- 周期性的使用
mark-and-sweep
分析整个进程 Native Heap,获取不可达的内存块信息「地址、大小」 - 获取到不可达的内存块的地址后,可以从我们的Map中获取其堆栈、内存大小、地址、线程等信息。
总结
本文从线上OOM问题入手,介绍了OOM原理, 以及OOM优化方案和监控方案,基本上都是大厂开源出来的比较成熟的方案:
- 对于
pthread_create
OOM问题,介绍了无侵入性的new Thread
优化、无侵入性的线程池优化、以及线程泄漏监控; - 对于文件描述符过多问题,介绍了原理以及文件描述符监控方案、IO监控方案;
- 对于Java内存不足导致的OOM、介绍了无侵入性图片自动压缩方案、两种无侵入性的大图监控方案、Java内存泄漏监控的线下方案和线上方案、以及native内存泄漏监控方案。
大厂对外开源的技术非常多,但不一定最优,我们在学习过程中可以多加思考, 例如线程优化,booster 对于new Thread
的优化只是设置了线程名,有助于分析问题,而经过我的猜想和验证,通过字节码插桩,将new Thread
无侵入性替换成线程池调用,才是真正意义上的线程优化。