spark 中的事件总线 ListenerBus

事件监听模式一般需要定义3种组件:事件对象,事件源,事件监听器。在spark里面事件监听由ListenerBus组件负责,ListenerBus是spark事件总线,spark中的事件监听由ListenerBus负责,其中事件源是spark里面定义的各种事件,事件对象也即是这个事件对应的Event,事件监听器就是负责处理这些事件的Listener

一:ListenerBus的初始化

ListenerBus的初始化是在SparkContext的初始化中完成的,SparkContext在初始化的时候需要将作业运行的环境以及各种相关组件加载好,比如说sparkEnv,mapStatusManager,BlockManager,ShuffleManager,MetricSystem,ListenerBus等组件,sparkContext是spark作业的运行的入口类,在sparkContext初始化的时候将这些组件都初始化好,所以ListenerBus作为事件总线,责任重大,当然也会在这里初始化

private var _listenerBus: LiveListenerBus = _
 listenerBus = new LiveListenerBus(_conf)

这里初始化的是LiveListenerBus对象,该对象是内部维护了两个队列queues和queuedEvents

 private val queues = new CopyOnWriteArrayList[AsyncEventQueue]()

  // Visible for testing.
  @volatile private[scheduler] var queuedEvents = new mutable.ListBuffer[SparkListenerEvent]()

ListenerBus事件监听就是通过这两个队列实现的,具体看看这两个队列是如何工作的

先来看看ListenerBus的post方法,也就将事件对象发送到事件队列中

def post(event: SparkListenerEvent): Unit = {
    if (stopped.get()) {
      return
    }
    //此处是spark的测量系统,该source是计数器,记录多少个事件发送了
    metrics.numEventsPosted.inc()

    // If the event buffer is null, it means the bus has been started and we can avoid
    // synchronization and post events directly to the queues. This should be the most
    // common case during the life of the bus.
    // queuedEvents如果为空的话,那么说明LiveListener已经启动过了,那么而直接掉好用postToQueues方法,该方法内部调用的AsyncEventQueue的post
    // 方法,将event添加到AsyncEventQueue内部维护的一个事件队列中(private val eventQueue = new LinkedBlockingQueue[SparkListenerEvent](
    // conf.get(LISTENER_BUS_EVENT_QUEUE_CAPACITY) ))
    
    if (queuedEvents == null) {
      postToQueues(event)
      return
    }

    // Otherwise, need to synchronize to check whether the bus is started, to make sure the thread
    // calling start() picks up the new event.
    //如果LiveListener没有启动过,在将事件天添加到queuedEvents队列中,等待start()将事件发送的监听器
    synchronized {
      if (!started.get()) {
        queuedEvents += event
        return
      }
    }

    // If the bus was already started when the check above was made, just post directly to the
    // queues.
    postToQueues(event)
  }

上面的代码解释了事件对象添加到队列中的原理,下面再来看看,事件是如何发送的监听器的,该过程由LiveListenerBus中的start()方法触发

/**
   * Start sending events to attached listeners.
   *
   * This first sends out all buffered events posted before this listener bus has started, then
   * listens for any additional events asynchronously while the listener bus is still running.
   * This should only be called once.
   *
   * @param sc Used to stop the SparkContext in case the listener thread dies.
   */
  def start(sc: SparkContext, metricsSystem: MetricsSystem): Unit = synchronized {
      //判断liveListenerBus是否已经启动过,启动了则抛出异常
    if (!started.compareAndSet(false, true)) {
      throw new IllegalStateException("LiveListenerBus already started.")
    }

    this.sparkContext = sc
      // 重点来了,此处先调用queues的start()方法,实则是启动了一个线程,
    queues.asScala.foreach { q =>
      q.start(sc)
      queuedEvents.foreach(q.post)
    }
    queuedEvents = null
    metricsSystem.registerSource(metrics)
  }

该方法的作用一开始就说明了,将events发送到listeners。该方法内部首先调用了q.start()方法,实则是启动了一个线程去轮询的将event发送到监听器,queuedEvents.foreach(q.post) 和上面的postToQueues(event)的作用最后调用的都是post方法,将event加入到AsyncEventQueue内部的一个eventQueue中。

下面重点看看AsyncEventQueue类 的start()方法是如何将event发送到listener中的

/**
  * AsyncEventQueue 该类是SparkListenerBus的子类
**/

private[scheduler] def start(sc: SparkContext): Unit = {
    if (started.compareAndSet(false, true)) {
      this.sc = sc
      dispatchThread.start()
    } else {
      throw new IllegalStateException(s"$name already started!")
    }
  }

private val dispatchThread = new Thread(s"spark-listener-group-$name") {
    setDaemon(true)
    override def run(): Unit = Utils.tryOrStopSparkContext(sc) {
      dispatch()
    }
  }

  private def dispatch(): Unit = LiveListenerBus.withinListenerThread.withValue(true) {
    // 从eventQueue中取出待处理的event,并通过postToAll将事件发送到listener中
    var next: SparkListenerEvent = eventQueue.take()
    while (next != POISON_PILL) {
      val ctx = processingTime.time()
      try {
        // 重点方法  
        super.postToAll(next)
      } finally {
        ctx.stop()
      }
      eventCount.decrementAndGet()
      next = eventQueue.take()
    }
    eventCount.decrementAndGet()
  }

再来看看super.postToAll

/**
  * SparkListenerBus
  *
**/
protected override def doPostEvent(
      listener: SparkListenerInterface,
      event: SparkListenerEvent): Unit = {
    event match {
      case stageSubmitted: SparkListenerStageSubmitted =>
        listener.onStageSubmitted(stageSubmitted)
      case stageCompleted: SparkListenerStageCompleted =>
        listener.onStageCompleted(stageCompleted)
      case jobStart: SparkListenerJobStart =>
        listener.onJobStart(jobStart)
      case jobEnd: SparkListenerJobEnd =>
        listener.onJobEnd(jobEnd)
      case taskStart: SparkListenerTaskStart =>
        listener.onTaskStart(taskStart)
      case taskGettingResult: SparkListenerTaskGettingResult =>
        listener.onTaskGettingResult(taskGettingResult)
      case taskEnd: SparkListenerTaskEnd =>
        listener.onTaskEnd(taskEnd)
      case environmentUpdate: SparkListenerEnvironmentUpdate =>
        listener.onEnvironmentUpdate(environmentUpdate)
      case blockManagerAdded: SparkListenerBlockManagerAdded =>
        listener.onBlockManagerAdded(blockManagerAdded)
      case blockManagerRemoved: SparkListenerBlockManagerRemoved =>
        listener.onBlockManagerRemoved(blockManagerRemoved)
      case unpersistRDD: SparkListenerUnpersistRDD =>
        listener.onUnpersistRDD(unpersistRDD)
      case applicationStart: SparkListenerApplicationStart =>
        listener.onApplicationStart(applicationStart)
      case applicationEnd: SparkListenerApplicationEnd =>
        listener.onApplicationEnd(applicationEnd)
      case metricsUpdate: SparkListenerExecutorMetricsUpdate =>
        listener.onExecutorMetricsUpdate(metricsUpdate)
      case executorAdded: SparkListenerExecutorAdded =>
        listener.onExecutorAdded(executorAdded)
      case executorRemoved: SparkListenerExecutorRemoved =>
        listener.onExecutorRemoved(executorRemoved)
      case executorBlacklistedForStage: SparkListenerExecutorBlacklistedForStage =>
        listener.onExecutorBlacklistedForStage(executorBlacklistedForStage)
      case nodeBlacklistedForStage: SparkListenerNodeBlacklistedForStage =>
        listener.onNodeBlacklistedForStage(nodeBlacklistedForStage)
      case executorBlacklisted: SparkListenerExecutorBlacklisted =>
        listener.onExecutorBlacklisted(executorBlacklisted)
      case executorUnblacklisted: SparkListenerExecutorUnblacklisted =>
        listener.onExecutorUnblacklisted(executorUnblacklisted)
      case nodeBlacklisted: SparkListenerNodeBlacklisted =>
        listener.onNodeBlacklisted(nodeBlacklisted)
      case nodeUnblacklisted: SparkListenerNodeUnblacklisted =>
        listener.onNodeUnblacklisted(nodeUnblacklisted)
      case blockUpdated: SparkListenerBlockUpdated =>
        listener.onBlockUpdated(blockUpdated)
      case speculativeTaskSubmitted: SparkListenerSpeculativeTaskSubmitted =>
        listener.onSpeculativeTaskSubmitted(speculativeTaskSubmitted)
      case _ => listener.onOtherEvent(event)
    }

事件在SparkListenerBus中被处理掉,整个事件总线的处理流程完成。再来看看spark中事件总线涉及到类的关系图

listenerBus事件总线主要涉及到上面的4个类,补充一点添加/移除监听器是用ListenerBus这个抽象类提供的addListener和removeListener来完成的,整个事件总线工作流程分析完成,再次说明,设计一个事件监听模型,最少要定义清楚3个组件:事件源,事件对象,事件监听器,最后就是怎么样将事件对象发送到事件监听器中处理,可以参照spark里面的设计,将事件对象缓存到一个队列中,然后再由线程去轮询这个队列完成事件对象到事件监听的映射

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容