Thread、Runnable、Callable、FutureTask详解

Java创建线程的方式有三种:
1.继承Thread
2.实现Runnable
3.实现Callable

继承Thread

继承Thread类并重写其void run方式即可新建一个线程,启动调用Thread.start()方法。

Thread thread  = new Thread(()->{
            try {
                Thread.sleep(3000);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
            log.info(Thread.currentThread().getName()+"thread线程执行");
        });
        thread.start();

实现Runnable

Runnable接口提供了一个void run接口,实现该方法定义线程,但运行其线程,还需要将其传递给Thread类,调用Thread.start()运行线程。

Runnable runnable = new Runnable() {
            @Override
            public void run() {
                try {
                    Thread.sleep(3000);
                } catch (InterruptedException e) {
                    throw new RuntimeException(e);
                }
                log.info("runnable 线程执行" + Thread.currentThread().getName());
            }
        };
        //runnable依赖Thread执行
        new Thread(runnable).start();

实现Callable

无论是继承Thread还是实现Runnable接口创建的线程都是没有返回值的,如果需要返回值,则需要实现Callable创建线程。

Callable<String> callable = new Callable<String>() {
            @Override
            public String call() throws Exception {
                Thread.sleep(3000);
                System.out.println("callable线程" + Thread.currentThread().getName());
                return "callable线程" + Thread.currentThread().getName();
            }
        };

但callable本是没有提供运行线程的方法,Thread的构造函数也没有接受Callable类型的,因此要运行Callable创建的线程,需要借助FutureTask类。

FutureTask<String> stringFutureTask = new FutureTask<>(callable);
        new Thread(stringFutureTask).start();

可以通过FutureTask的get方法获取线程执行结果,如果线程没有执行完,则会一直阻塞。

stringFutureTask.get();

FutureTask

FutureTask实现RunnableFuture接口,RunableFuture接口继承了Runnable、Future接口。RunableFuture本是没有实现任何功能。

public interface RunnableFuture<V> extends Runnable, Future<V> {
    /**
     * Sets this Future to the result of its computation
     * unless it has been cancelled.
     */
    void run();
}

Future接口定义了线程的一系列方法,如获取线程运行结果、查看线程是否执行完毕、取消线程、查询线程是否已取消。

public interface Future<V> {

    boolean cancel(boolean mayInterruptIfRunning);

    boolean isCancelled();

    boolean isDone();

    V get() throws InterruptedException, ExecutionException;

    V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}

FutureTask实现了RunableFuture的run方法和Future接口的一系列方法,首先看看FutureTask这个类成员变量

  private volatile int state;
    private static final int NEW          = 0;
    private static final int COMPLETING   = 1;
    private static final int NORMAL       = 2;
    private static final int EXCEPTIONAL  = 3;
    private static final int CANCELLED    = 4;
    private static final int INTERRUPTING = 5;
    private static final int INTERRUPTED  = 6;

    /** The underlying callable; nulled out after running */
    private Callable<V> callable;
    /** The result to return or exception to throw from get() */
    private Object outcome; // non-volatile, protected by state reads/writes
    /** The thread running the callable; CASed during run() */
    private volatile Thread runner;
    /** Treiber stack of waiting threads */
    private volatile WaitNode waiters;

其中使用volatile修饰的state变量表示线程的状态,在这里线程的状态分为以下几个:
1.New 线程初始状态
2.COMPLETING 线程由NEW转变为NORMAL或EXCEPTIONAL的中间状态
3.NORMAL 线程正常结束的状态
4.EXCEPTIONAL 线程因异常结束的状态
5.CANCELLED 线程取消状态
6.INTERRUPTING 线程由NEW转变为INTERRUPTED的中间状态
7.INTERRUPTED 线程中断状态
状态关系图如下:


image.png

FutureTask其他的Callable变量表示传入的Callable线程实现、outcome表示线程的执行结果,其中runner表示当前运行线程、waiter表示等待线程,等待线程类型是内部类WaitNode,如下:

 static final class WaitNode {
        volatile Thread thread;
        volatile WaitNode next;
        WaitNode() { thread = Thread.currentThread(); }
    }

类似链表,存储的是当前线程和下一个等待线程,在线程执行没有结束时,获取线程的结果的线程都会被放入该链表,当运行线程执行结束时,会依次唤醒等待线程。
首先来看FutureTask的构造函数:

   public FutureTask(Callable<V> callable) {
        if (callable == null)
            throw new NullPointerException();
        this.callable = callable;
        this.state = NEW;       // ensure visibility of callable
    }

传入Callable,并设置state为初始状态NEW,紧接着看看run方法:

public void run() {
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))
            return;
        try {
            Callable<V> c = callable;
            if (c != null && state == NEW) {
                V result;
                boolean ran;
                try {
                    result = c.call();
                    ran = true;
                } catch (Throwable ex) {
                    result = null;
                    ran = false;
                    setException(ex);
                }
                if (ran)
                    set(result);
            }
        } finally {
            // runner must be non-null until state is settled to
            // prevent concurrent calls to run()
            runner = null;
            // state must be re-read after nulling runner to prevent
            // leaked interrupts
            int s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
    }

执行流程如下:
1.首先判断当前状态是否为NEW,同时利用CAS判断当前类的runnerOffset偏移量是否为null,这两个判断都是用于验证当前线程是否在执行中。其中偏移量参数的初始化放在了static代码块里。如:

  private static final sun.misc.Unsafe UNSAFE;
    private static final long stateOffset;
    private static final long runnerOffset;
    private static final long waitersOffset;
    static {
        try {
            UNSAFE = sun.misc.Unsafe.getUnsafe();
            Class<?> k = FutureTask.class;
            stateOffset = UNSAFE.objectFieldOffset
                (k.getDeclaredField("state"));
            runnerOffset = UNSAFE.objectFieldOffset
                (k.getDeclaredField("runner"));
            waitersOffset = UNSAFE.objectFieldOffset
                (k.getDeclaredField("waiters"));
        } catch (Exception e) {
            throw new Error(e);
        }
    }

2.接着检查传入的callable对象是null同时state的状态,为真执行callable的call方法,将ran的值设置为true,该变量的作用是标识线程是否是正常结束还是异常结束
3.如果发送异常,result结果值为null,ran为FALSE,执行setException方法

 protected void setException(Throwable t) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            outcome = t;
            UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
            finishCompletion();
        }
    }

该方法的逻辑就是变更state状态 由new->completing->exceptional,同时调用finishCompletion()将waiter等待链表的线程全部唤醒,并将waiter初始化。

private void finishCompletion() {
        // assert state > COMPLETING;
        for (WaitNode q; (q = waiters) != null;) {
            if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
                for (;;) {
                    Thread t = q.thread;
                    if (t != null) {
                        q.thread = null;
                        LockSupport.unpark(t);
                    }
                    WaitNode next = q.next;
                    if (next == null)
                        break;
                    q.next = null; // unlink to help gc
                    q = next;
                }
                break;
            }
        }

        done();

        callable = null;        // to reduce footprint
    }

4.如果正常结束,执行set(result)方法

protected void set(V v) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            outcome = v;
            UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
            finishCompletion();
        }
    }

该方法的逻辑就是将stateOffset转变为 NEW->COMPLETING->NORMAL ,再唤醒等待链表,初始化waiter
5.最后finally执行结尾操作,将运行线程runner置为null,判断当前状态,如果是中断或者正在中断的话 让出该线程的时间片,让线程恢复为就绪状态,准备中断。 提高系统吞吐量。
除此之外,futuretask的get()方法如下:

public V get() throws InterruptedException, ExecutionException {
        //获取状态
        int s = state;
        //如果运行线程还没未执行结束
        if (s <= COMPLETING)
        //等待线程执行完毕
            s = awaitDone(false, 0L);
        //直接返回线程执行结果
        return report(s);
    }

其中awaitDone方法是将当前获取线程执行结果的线程阻塞等待。具体分析如下:

private int awaitDone(boolean timed, long nanos)
        throws InterruptedException {
      //获取等待时间
        final long deadline = timed ? System.nanoTime() + nanos : 0L;
      //
        WaitNode q = null;
        boolean queued = false;
        for (;;) {
            //如果出现线程中断信息则移除等待链表的节点信息,并抛出异常
            if (Thread.interrupted()) {
                removeWaiter(q);
                throw new InterruptedException();
            }
            //获取执行线程状态
            int s = state;
           //如果线程执行完毕
            if (s > COMPLETING) {
           //将等待节点的线程置为null
                if (q != null)
                    q.thread = null;
                //直接返回状态
                return s;
            }
          //表示当前执行线程快执行完了,当前线程让出cpu 恢复为就绪状态等待
            else if (s == COMPLETING) // cannot time out yet
                Thread.yield();
            //如果任务还在执行或还未执行则构建waitnode节点
            else if (q == null)
                q = new WaitNode();
        // 利用cas机制将构建好的waitnode节点加入逻辑链表
        // 注意:该链表是栈的结构,所以并不是将新的节点
        // 变为之前节点的next,而是新节点变为head节点
        // 旧节点变为next后继节点(这样方便维护逻辑链表结构)
            else if (!queued)
                queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                     q.next = waiters, q);
           //如果是超时等待模式 则判断是否超时
            //超时则移除等待节点直接返回状态
            else if (timed) {
                nanos = deadline - System.nanoTime();
                if (nanos <= 0L) {
                    removeWaiter(q);
                    return state;
                }
                //未超时 则挂起相应时间
                LockSupport.parkNanos(this, nanos);
            }
            else
              //正常则挂起线程
                LockSupport.park(this);
        }
    }

参考资料:
https://juejin.cn/post/7038471861860040741#heading-3

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容