TUSHARE的学习

一,获取个股数据

import tushare as ts

df = ts.get_hist_data('600848')

ts.get_hist_data('600848',ktype='W') #获取周k线数据

ts.get_hist_data('600848',ktype='M') #获取月k线数据

ts.get_hist_data('600848',ktype='5') #获取5分钟k线数据

ts.get_hist_data('600848',ktype='15') #获取15分钟k线数据

ts.get_hist_data('600848',ktype='30') #获取30分钟k线数据

ts.get_hist_data('600848',ktype='60') #获取60分钟k线数据

ts.get_hist_data('sh')#获取上证指数k线数据,其它参数与个股一致,下同

ts.get_hist_data('sz')#获取深圳成指k线数据 ts.get_hist_data('hs300')#获取沪深300指数k线数据

ts.get_hist_data('sz50')#获取上证50指数k线数据

ts.get_hist_data('zxb')#获取中小板指数k线数据

ts.get_hist_data('cyb')#获取创业板指数k线数据

获取实时分笔数据

df = ts.get_realtime_quotes('000581')

print df[['code','name','price','bid','ask','volume','amount','time']]

返回值说明:

0:name,股票名字

1:open,今日开盘价

2:pre_close,昨日收盘价

3:price,当前价格

4:high,今日最高价

5:low,今日最低价

6:bid,竞买价,即“买一”报价

7:ask,竞卖价,即“卖一”报价

8:volumn,成交量 maybe you need do volumn/100

9:amount,成交金额(元 CNY)

10:b1_v,委买一(笔数 bid volume)

11:b1_p,委买一(价格 bid price)

12:b2_v,“买二”

13:b2_p,“买二”

14:b3_v,“买三”

15:b3_p,“买三”

16:b4_v,“买四”

17:b4_p,“买四”

18:b5_v,“买五”

19:b5_p,“买五”

20:a1_v,委卖一(笔数 ask volume)

21:a1_p,委卖一(价格 ask price)

...

30:date,日期

31:time,时间

二,获取分类数据

行业分类

ts.get_industry_classified()

概念分类,所有股票炒作概念,比如苹果、特斯拉等

ts.get_concept_classified()

地域分类

ts.get_area_classified()

中小板分类

ts.get_sme_classified()

创业板分类

ts.get_gem_classified()

风险警示板分类

ts.get_st_classified()

沪深300成份股及权重

ts.get_hs300s()

上证50成份股

ts.get_sz50s()

基本面数据

沪深股票列表(基础数据,沪深所有股票情况)

ts.get_stock_basics()

业绩报告(主表)

#获取2014年第3季度的业绩报表数据

ts.get_report_data(2014,3)

盈利能力数据

#获取2014年第3季度的盈利能力数据

ts.get_profit_data(2014,3)

营运能力数据

#获取2014年第3季度的营运能力数据

ts.get_operation_data(2014,3)

成长能力数据

ts.get_growth_data(2014,3)

偿债能力数据

ts.get_debtpaying_data(2014,3)

现金流量数据

ts.get_cashflow_data(2014,3)

三,保存数据

保存为csv格式

import tushare as ts

df = ts.get_hist_data('000875')#直接保存

df.to_csv('c:/day/000875.csv')#选择保存

df.to_csv('c:/day/000875.csv',columns=['open','high','low','close'])

保存为Excel格式

df = ts.get_hist_data('000875')#直接保存

df.to_excel('c:/day/000875.xlsx')#设定数据位置(从第3行,第6列开始插入数据)

df.to_excel('c:/day/000875.xlsx', startrow=2,startcol=5)

保存为HDF5文件格式

df = ts.get_hist_data('000875')

df.to_hdf('c:/day/hdf.h5','000875')

保存为JSON格式

df = ts.get_hist_data('000875')

df.to_json('c:/day/000875.json',orient='records')

四,连接MySQL数据库

pandas提供了将数据便捷存入关系型数据库的方法,在新版的pandas中,主要是已sqlalchemy方式与数据建立连接,支持MySQL、Postgresql、Oracle、MS SQLServer、SQLite等主流数据库。本例以MySQL数据库为代表,展示将获取到的股票数据存入数据库的方法,其他类型数据库请参考sqlalchemy官网文档的create_engine部分。

from sqlalchemy import create_engine

import tushare as ts

df = ts.get_tick_data('600848',date='2014-12-22')

engine = create_engine('mysql://user:passwd@127.0.0.1/db_name?charset=utf8')

#存入数据库

df.to_sql('tick_data',engine)

#追加数据到现有表

#df.to_sql('tick_data',engine,if_exists='append')

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,084评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,623评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,450评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,322评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,370评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,274评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,126评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,980评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,414评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,599评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,773评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,470评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,080评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,713评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,852评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,865评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,689评论 2 354

推荐阅读更多精彩内容