python 计算数据中值的置信区间

最近给导师报告处理WISE数据的进展时,对于处理WISE光变导师希望我对每一个观测区间的星等数值给中值的置信度。

计算数据的中值95%的置信区间

假设有一组数据如下:

data = [-0.1, -2.4, -0.1, -0.7, -1.4, -0.9, -3.2, -0.2, -0.3, -0.6, -3.2, -5.5]

求中值的置信区间与求数据的均值置信区间的方法是类似的,在这里我不会讨论详细的数学原理,而是直接给出置信度为95%时,对应的数据的上限值与下限值。(有关python实现的重点在于代码)
下限:0.5n-0.98\sqrt{n}
上限:1+0.5n+0.98\sqrt{n}
上面公式给出的是理论值,具体应用到数据上时,要对得到的下限上限取整下限值向上取整上限值向下取整

一般情况:
Lower lim = n \over 2 - \sqrt{n} \over 2 * N_{1 - {\alpha \over 2}}
Upper lim = 1 + n \over 2 + \sqrt{n} \over 2 * N_{1 - {\alpha \over 2}}
注:n是数据个数,一般要求数据点个数n>=6。当n<6时是没有中值的置信区间。

计算上述data的中值95%置信区间

首先要将原数据从小到大排列:

sorted(data)
data1 = [-5.5,-3.2,-3.2,-2.4,-1.4,-0.9,-0.7,-0.6,-0.3,-0.2,-0.1,0.1]

下限值:0.5* 12 - 0.98* \sqrt{12} = 2.6
上限值:1+0.5* 12 + 0.98* \sqrt{12} = 10.4
则95%置信区间对应的数值是第3个数据第10个数据,即(-3.2,-0.2)

python实现

#求中值median的置信区间(confidence interval),95%的CI
#对于中值的置信区间CI,下限lower limit向上取整,upper limit向下取整
#要注意python中是从0开始计数的,根据上述就很好理解return语句的含义了。
#其实可以吧math.ceil() - 1 用math.floor()代替
import math
import numpy as np
import matplotlib.pyplot as plt

#自定义的median_ci函数是给出某一数据95%置信区间的上限和下限对应的值
def median_ci(data,confidence=0.95):
    data1 = sorted(data)
    n = len(data1)
    ll = 0.5*n - 0.98*math.sqrt(n)
    ul = 1 + 0.5*n + 0.98*math.sqrt(n)
    l = data1[math.ceil(ll)-1]
    u = data1[math.floor(ul) - 1]
    return (l,u)
#在自定义的函数里面已经将数据从小到大排序了,所以调用函数时用的是数据data
l,u = median_ci(data)
print(l,u)
-3.2,-0.2

参考:Confidence Intervals for a MedianDocumentation for
Confidence Interval of median or percentiles for a given sample size
.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,172评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,346评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,788评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,299评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,409评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,467评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,476评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,262评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,699评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,994评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,167评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,499评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,149评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,387评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,028评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,055评论 2 352

推荐阅读更多精彩内容