JPMML Example Random Forest 【R && Spark】

The Predictive Model Markup Language (PMML) developed by the Data Mining Group is a standardized XML-based representation of mining models to be used and shared across languages or tools. The standardized definition allows a classification model trained with R to be used with Storm for example. Many projects related to Big Data have some support for PMML, which is often implemented by JPMML.

Train and Export from R

For this example we train a random forest model based on the iris data set in R. The data set is divided into two samples for training and testing.

# load library and data
library(randomForest)
data(iris)
 
# load data and divide into training set and sampling
ind <- sample(2,nrow(iris),replace=TRUE,prob=c(0.7,0.3))
trainData <- iris[ind==1,]
testData <- iris[ind==2,]
 
# train model
iris_rf <- randomForest(Species~.,data=trainData,ntree=100,proximity=TRUE)
table(predict(iris_rf),trainData$Species)
 
# visualize the model
print(iris_rf)
attributes(iris_rf)
plot(iris_rf)

Now that we have our model we can use the PMML implementation of R to store it a file. Since PMML is XML based we also need the XML library of R to write the model into a file.

# load xml and pmml library
library(XML)
library(pmml)
 
# convert model to pmml
iris_rf.pmml <- pmml(iris_rf,name="Iris Random Forest",data=iris_rf)
 
# save to file "iris_rf.pmml" in same workspace
saveXML(iris_rf.pmml,"iris_rf.pmml")

Run Model in Java with JPMML

Now that we have our trained model we take JPMML to exercise it on the same input. Random Forest, although a kind of tree model, does not count as such in a strict manner. It is a MiningModel for classification in the PMML definition.



PMML pmml = <strong>createPMMLfromFile</strong>("iris_rf.pmml");
 
// create a ModelEvaluator, later being used for evaluation of the input data
ModelEvaluator<<strong>MiningModel</strong>> modelEvaluator = new MiningModelEvaluator(pmml);
printArgumentsOfModel(modelEvaluator);
 
// unmarshal the given file to a PMML model
public PMML <strong>createPMMLfromFile</strong>(String fileName) throws SAXException, JAXBException, FileNotFoundException {
  File pmmlFile = new File(App.class.getResource(fileName).getPath());
  String pmmlString = new Scanner(pmmlFile).useDelimiter("\Z").next();
 
  InputStream is = new ByteArrayInputStream(pmmlString.getBytes());
  InputSource source = new InputSource(is);
  SAXSource transformedSource = ImportFilter.apply(source);
  
  return JAXBUtil.unmarshalPMML(transformedSource);
}

Here we create an explicit ModelEvaluator for a MiningModel. For a more general implementation the ModelEvalutorFactory could be used. The PMML class also has a getModels() function to extract the given model from the definition found in the XML.

The model evaluator can now be used to classify the input data. We use the same iris data we used to train the model for demo purposes. Each model specifies the required input fields and their value types. Here the readArgumentsFromLine function is being used to set the parameters necessary prior to the evaluation. Not much more is required. After we have set the parameters the model can successfully be evaluated. The result again can be read from the model itself.

for(String dataLine : dataLines){
  // System.out.println(dataLine); // (sepal_length,sepal_width,petal_length,petal_width,class)
  if(dataLine.startsWith("sepal_length")) continue;
 
  // read input field for the model
  Map<FieldName, FieldValue> arguments = <strong>readArgumentsFromLine</strong>(dataLine, modelEvaluator);
  modelEvaluator.verify();
 
  // evaluate the model with the given fields
  Map<FieldName, ?> results = modelEvaluator.evaluate(arguments);
  
  // read result fields
  FieldName targetName = modelEvaluator.getTargetField();
  Object targetValue = results.get(targetName);
 
  ProbabilityClassificationMap nodeMap = (ProbabilityClassificationMap) targetValue;
 
  System.out.println("n% 'setosa': " + nodeMap.getProbability("setosa"));
  System.out.println("% 'versicolor': " + nodeMap.getProbability("versicolor"));
  System.out.println("% 'virginica': " + nodeMap.getProbability("virginica"));
 
  System.out.println("== Result: " + nodeMap.getResult() +"n");
}
 
// prepare the input fields of the model
public Map<FieldName, FieldValue> <strong>readArgumentsFromLine</strong>(String line, ModelEvaluator<MiningModel> modelEvaluator) {
  Map<FieldName, FieldValue> arguments = new LinkedHashMap<FieldName, FieldValue>();
  String[] lineArgs = line.split(",");
 
  if( lineArgs.length != 5) return arguments;
 
  FieldValue sepalLength = modelEvaluator.prepare(new FieldName("Sepal.Length"), lineArgs[0].isEmpty() ? 0 : lineArgs[0]);
  FieldValue sepalWidth = modelEvaluator.prepare(new FieldName("Sepal.Width"), lineArgs[1].isEmpty() ? 0 : lineArgs[1]);
  FieldValue petalLength = modelEvaluator.prepare(new FieldName("Petal.Length"), lineArgs[2].isEmpty() ? 0 : lineArgs[2]);
  FieldValue petalWidth = modelEvaluator.prepare(new FieldName("Petal.Width"), lineArgs[3].isEmpty() ? 0 : lineArgs[3]);
 
  arguments.put(new FieldName("Sepal.Length"), sepalLength);
  arguments.put(new FieldName("Sepal.Width"), sepalWidth);
  arguments.put(new FieldName("Petal.Length"), petalLength);
  arguments.put(new FieldName("Petal.Width"), petalWidth);
 
  return arguments;
}

The output would look like this:

...
% 'setosa': 1.0
% 'versicolor': 0.0
% 'virginica': 0.0
== Result: setosa
 
 
% 'setosa': 1.0
% 'versicolor': 0.0
% 'virginica': 0.0
== Result: setosa
....
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 希花文案阅读 1,560评论 0 3
  • 每个人的人生都在演一部戏,戏中不同的场景扮演不同的角色,或许他们以真实露面,或许他们带上面具,亦或许.........
    Sparrow悦阅读 3,060评论 0 0
  • 已经累到不想说话,一整天都在收集、整理班主任需要准备的材料和布置给孩子们的材料,忙的已经头昏脑胀了。本想下...
    皮_小皮阅读 1,235评论 3 7
  • 初学,新手傻瓜式教程 https://codelabs.developers.google.com/codelab...
    Justin_YXZ阅读 3,749评论 0 0