encoder-decoder模型和注意力模型(Attention Model)

参考链接:http://blog.csdn.net/mebiuw/article/details/53341404

http://blog.csdn.net/u014595019/article/details/52826423

http://blog.csdn.net/malefactor/article/details/50550211

多用于NLP领域


    什么是encoder-decoder模型?就是编码-解码模型,其实是一个解决问题的框架,主要解决seq2seq类问题,Sequence在这里可以理解为一个字符串序列,当我们在给定一个字符串序列后,希望得到与之对应的另一个字符串序列,比如问答系统,比如翻译系统。

    encoder-decoder模型的流程可以理解为“编码--》存储--》解码”这一流程,可以用人脑流程来类比,我们先看到源Sequence,将其读一遍,然后在我们大脑当中就记住了这个源Sequence,并且存在大脑的某一个位置上,形成我们自己的记忆(对应Context),然后我们再经过思考,将这个大脑里的东西转变成输出,然后写下来。那么我们大脑读入的过程叫做Encoder,即将输入的东西变成我们自己的记忆,放在大脑当中,而这个记忆可以叫做Context,然后我们再根据这个Context,转化成答案写下来,这个写的过程叫做Decoder。

    整个模型用图表示如下:

    但是它有一个显著的缺点,也就是整个编码-解码过程共享一个单独不变的语义编码C。我们可以将输入句子X=(X1,X2,......Xm),Y=(Y1,Y2,......Yn),中间语义C=F(X1,X2,...Xm)。

那么对Y的输出就是如下

我们可以看到,无论生成Y几,中间语义是不变的,也就是说这个模型是“没有注意力的”。这个模型有几个很大的问题,它无法体现前几(一)个单词对当前单词的影响,整个句子X的语义被压缩成一个向量X,二是语义向量无法完全表示整个序列的信息,还有就是先输入的内容携带的信息会被后输入的信息稀释掉,或者说,被覆盖了。

    介绍完原始E-D模型,这时候我们要引入下Attetion模型,模型图如下:

生成目标句子Y就成了如下:

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,843评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,538评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,187评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,264评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,289评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,231评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,116评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,945评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,367评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,581评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,754评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,458评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,068评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,692评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,842评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,797评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,654评论 2 354

推荐阅读更多精彩内容

  • 原文地址 要是关注深度学习在自然语言处理方面的研究进展,我相信你一定听说过Attention Model(后文有时...
    Henrywood阅读 1,717评论 0 5
  • 近日,谷歌官方在 Github开放了一份神经机器翻译教程,该教程从基本概念实现开始,首先搭建了一个简单的NMT模型...
    MiracleJQ阅读 6,369评论 1 11
  • 最近人工智能随着AlphaGo战胜李世乭这一事件的高关注度,重新掀起了一波新的关注高潮,有的说人工智能将会如何超越...
    MiracleJQ阅读 2,829评论 2 1
  • 十店预售,亲身在开幕会场感受的第二天。昨日大悦城没成单,今日在望京成三张年卡,和预期期望有悬殊。慢慢回味其...
    心的字阅读 232评论 2 2
  • 一 你准备去洗澡,打开衣柜突然发现:只剩下最后一双干净的袜子了,剩余的脏袜子都已在脏衣袋子里面躺了很久。 “袜子不...
    卜卜西阅读 562评论 1 2