Fractional Lion 's Lemma

Lemma 1. Let\left\{u_{\epsilon}\right\}_{\epsilon>0} \subset H_{0}^{s}(\Omega) be a sequence of functions such that \| ( - \Delta ) ^ { s } u \| _ { L^2 ( \Omega ) } \leq 1"andu_{\epsilon} \rightharpoonup u_{0} weakly in H_{0}^{s}(\Omega). Then for any p < 1 / ( 1 - \| ( - \Delta ) ^ { s /2} u _ { \epsilon} \| _ { 2 } ^ { 2 } ).
\underset { \epsilon \rightarrow 0 } { \operatorname { lim sup } } \int _ { \Omega } e ^ { {\alpha _ { n , 2 }} p u _ { \epsilon } ^ { 2 } } d x < + \infty

Proof.
If u_{0}=0, then nothing need to be proved because of
\left. \begin{array} { c } { \operatorname { Sup } _ { u \in { H } ^ { { s } , p } ( \Omega ) , \| ( - \Delta ) ^ { \frac { s } { 2 } } u \| _ { L ^ { p } ( \Omega ) }\leq 1 } \int _ { \Omega } e ^ { \alpha _ { n , p } | u | ^ { \frac { p } { p - 1 } } } d x = c _ { n , p } | \Omega | \leq + \infty} \end{array} \right.
It's easy to check when p=2 , also Testimonies theorem.The Lemma 1 is obvious.

If u_{0}\neq0, we can see that
{ \| (-\Delta)^{\frac { s } { 2 }} ( u _ { \epsilon } - u _ { 0 } ) \| _ { 2 } ^ { 2 } } \rightarrow 1 - { \| (-\Delta)^{\frac { s } { 2 }} u _ { 0 } \| _ { 2 } ^ { 2 } }< 1
Then when p < 1 / ( 1 - \| ( - \Delta ) ^ { s /2} u _ { \epsilon} \| _ { 2 } ^ { 2 } ),we can judge the range of inenqulity in Lemma 1.
At first, we have to check \delta u _ { \epsilon } ^ { 2 } + ( 2 + \delta + \frac { 1 } { \delta } ) u _ { 0 } ^ { 2 } - ( 1 + \delta ) \cdot 2 \cdot u _ { 0 } u _ { \varepsilon } > 0 always hold , which is simply easy.Then apply Holder’s inequality :

\begin{aligned}\int_{\Omega} e^{ \alpha _ { n , 2 } p u_{\epsilon}^{2}} d x &\leqslant \int_{\Omega} e^{ \alpha _ { n , 2 }p(u_{\epsilon}^{2}+\delta u _ { \epsilon } ^ { 2 } + ( 2 + \delta + \frac { 1 } { \delta } ) u _ { 0 } ^ { 2 } - ( 1 + \delta ) \cdot 2 \cdot u _ { 0 } u _ { \varepsilon } )} d x \\ &= \int_{\Omega} e^{ \alpha _ { n , 2 }p(1+\delta)\left(u_{\epsilon}-u_{0}\right)^{2}+ \alpha _ { n , 2 } p(1+1 / \delta) u_{0}^{2}} d x\\ &\leqslant ( \int _ { \Omega } (e ^ { \alpha _ { n , 2} ( u _ { \epsilon } - u _ { 0 } ) ^ { 2 } (1+\delta) p})^{r} d x ) ^ { 1 / r } ( \int _ { \Omega } e ^ { \alpha _ { n , 2} p ^ { \prime } u _ { 0 } ^ { 2 } } d x ) ^ { 1 / s }\\ &\leqslant ( \int _ { \Omega } e ^ { \alpha _ { n , 2} \frac { ( u _ { \epsilon } - u _ { 0 } ) ^ { 2 } } { \| (-\Delta)^{\frac { s } { 2 }} ( u _ { \epsilon } - u _ { 0 } ) \| _ { 2 } ^ { 2 } } } d x ) ^ { 1 / r } ( \int _ { \Omega } e ^ { \alpha _ { n , 2} p ^ { \prime } u _ { 0 } ^ { 2 } } d x ) ^ { 1 / s }\\ &= G1 \times S2 \end{aligned}
for some \delta>0 ,and here p ^ { \prime }=(p+1/\delta) \frac { 1 } {1-p( 1+\delta )},where 1/r+1/s=1,r= \frac { 1 } {p( 1+\delta )} and s=\frac { 1 } {1-p( 1+\delta )}
Tt's easy to check G1 and S2 both are finite.So prove the Lemma.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。