算法之带你了解时间&空间复杂度

什么是算法?

算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰命令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有限时间内获得所要求的输出。如果一个算法有缺陷,或不适合于某个问题,执行这个算法将不会解决这个问题。不同的算法可能用不同的时间、空间或效率来完成同样的任务。一个算法的优劣可用空间复杂度与时间复杂度来衡量。

这两段代码都可以称之为算法,因为分别可以解决两个数相加和从1加到n的问题。算法并不一定要非常复杂,小到一行代码,多到上万行代码,只要能解决特定问题,就是算法。

如何评估算法优劣

使用不同算法,解决同一个问题,效率可能相差非常大

现有两个求斐波那契数 (fibonacci number) 的算法

(斐波那契数列:1 1 2 3 5 8 ……)

这里

```java

public static int fib1(int n) {

      if (n <= 1)return n;

      return fib1(n -1) + fib1(n - 2);

}

```

```java

public static int fib2(int n) {

      if (n <= 1)return n;

      int first = 0;

      int second = 1;

      for (int i = 0; i< n - 1; i++) {

        int sum = first + second;

        first = second;

        second = sum;

      }

      return second;

}

```

这两个算法哪个更优呢?

如果单从执行效率上进行评估,可能会想到这么一种方案

比较不同算法对同一组输入的执行处理时间

这种方案也叫做:事后统计法

我们的做法是:

```java

public static void main(String[] args) {

      int n = 45;//求第45个斐波那契数

      TimeTool.check("fib1",new Task() {

        public void execute() {

            System.out.println(fib1(n));

        }

      });//5.815秒

      TimeTool.check("fib2",new Task() {

        public void execute() {

            System.out.println(fib2(n));

        }

      });//0.0秒

}

```

上述方案有比较明显的缺点

执行时间严重依赖硬件以及运行时各种不确定的环境因素

必须编写相应的测算代码

测试数据的选择比较难保证公正性 (n=100时可能第一种算法时间更短,n=200时可能第二种算法时间更短)

一般从以下维度来评估算法的优劣

正确性、可读性、健壮性(对不合理输入的反应能力和处理能力)

时间复杂度(time complexity):估算程序指令的执行次数(执行时间)

空间复杂度(space complexity):估算所需占用的存储空间

我们用这种方案评估一下计算1+2+...+n的算法

显然第二种算法更好。难道是因为第二种方法代码更短吗?斐波那契数列的例子已经告诉我们并不是代码越短越好。这个例子中第二个算法只需要三步运算就可以解决问题,而第一种需要循环n次。首先都满足正确性、可读性、健壮性的条件,然后从时间复杂度来讲,假定一步运算的执行时间的一定的,我们考察一下大致需要执行多少次指令,就可以比较出两种算法的时间长短;再从空间复杂度考虑,需要的变量越少、开辟的存储空间越小,算法更好。

## 大O表示法

 一般用大O表示法来描述复杂度,它表示的是数据规模 n 对应的复杂度

方法步骤:

(1)估算时间复杂度/空间复杂度(主要是时间复杂度)

(2.1)忽略常数、系数、低阶

​             $9$>> O(1)

​             $2n+6$ >> O(n)             

​             $n^2+2n+6$ >> O($n^2$)

​             $4n^3+3n^2+22n+100$ >>O($n^3$)

   (2.2) 对数阶一般省略底数

​             $log_2n=log_29+log_9n$ (任意底数的对数可通过乘以一个常数相互转化)

​             所以 $log_2n$、$log_9n$ 统称为 $logn$

注意:大O表示法仅仅是一种粗略的分析模型,是一种估算,能帮助我们短时间内了解一个算法的执行效率

计算下面几段代码的时间复杂度

java

public static void test1(int n) {

    //1(进行一次判断操作)

      if (n > 10) {

        System.out.println("n > 10");

      } else if (n >5) { // 2

        System.out.println("n > 5");

      } else {

        System.out.println("n <= 5");

      }

      // 1(定义一次i) + 4(i累加四次) + 4(判断i<4四次) + 4(循环体一条语句执行四次)=9

      for (int i = 0; i< 4; i++) {

        System.out.println("test");

      }

      //大O表示法时间复杂度O(1)

}

java

public static void test2(int n) {

      // 1(定义一次i)+ 3n(i累加n次+判断i<n n次+循环体一条语句执行n次)=1+3n

      for (int i = 0; i< n; i++) {

        System.out.println("test");

      }

    //大O表示法时间复杂度O(n)

}

java

public static void test3(int n) {

      // 1(定义一次i) + 2n(i累加n次+判断i<n n次) + n(外层循环体语句执行n次) *

(1(定义一次j) + 3n(j累加n次+判断j<n n次+内层循环体一条语句执行n次))=3n^2 + 3n + 1

      for (int i = 0; i< n; i++) {

        for (int j = 0; j < n; j++) {

            System.out.println("test");

        }

      }

    //大O表示法时间复杂度O(n^2)

}

Java

public static void test4(int n) {

      // 8 = 2^3

      // 16 = 2^4

      // 3 = log2(8)

      // 4 = log2(16)

      //执行次数= log2(n)

      while ((n = n /2) > 0) {

        System.out.println("test");

      }

    //大O表示法时间复杂度O(logn)

}

java

public static void test5(int n) {

      // log5(n)

      while ((n = n /5) > 0) {

        System.out.println("test");

      }

    //大O表示法时间复杂度O(logn)

}

java

public static void test7(int n) {

      // 1(定义一次i) + 2*log2(n)(i*2运算次数) + log2(n)(外层循环执行次数) * (1 + 3n)(内层循环执行次数)

      for (int i = 1; i< n; i = i * 2) {

        // 1 + 3n

        for (int j = 0; j < n; j++) {

            System.out.println("test");

        }

      }

    // 1 + 3*log2(n) +2 * nlog2(n)

      //大O表示法时间复杂度O(nlogn)

}

可以借助函数生成工具对比复杂度的大小

https://zh.numberempire.com/graphingcalculator.php

篇幅有限,在此不再过多讲解。总而言之,算法的目的你可以简单的理解为在有效的时间内用最快的方法来解答问题,这也是算法的魅力所在,吸引着无数coder为之努力。

如果您想提升自己,学习更多算法、高级编程语言技巧,这里有免费的相关学习资料,欢迎加微信:19950277730获取更多技术提升秘籍。这里不仅有志同道合的小伙伴,更有无数免费编程技巧、学习视频和资料,加上微信来一起探讨学习技术吧!!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,335评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,895评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,766评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,918评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,042评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,169评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,219评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,976评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,393评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,711评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,876评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,562评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,193评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,903评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,699评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,764评论 2 351