使用sklearn自带的贝叶斯分类器进行文本分类和参数调优

Part 1: 本篇内容简介

在前一篇文章完全手写,自给自足完成贝叶斯文本分类中,我们使用首先假设在文档中出现的单词彼此独立,利用贝叶斯定理,完成了一个简单的文本分类器的编写,在真实数据的测试上,显示了良好的效果。
其实要是了解sklearn的人都应该知道,这个python的机器学习库,实现了我们常用的大部分机器学习算法,免除了我们重复造轮子的痛苦。我们使用和上一篇博客同样的数据,使用sklearn自带的贝叶斯分类器完成文本分类,同时和上一篇文章手写的分类器,进行分类精度、速度、灵活性对比。

Part 2: 朴素贝叶斯的在文本分类中常用模型:多项式、伯努利

这部分的内容,我参考了朴素贝叶斯分类器的应用这篇文章。朴素贝叶斯分类器是一种有监督学习,常见有两种模型,多项式模型(multinomial model)即为词频型和伯努利模(Bernoulli model)即文档型。二者的计算粒度不一样,多项式模型以单词为粒度,伯努利模型以文件为粒度,因此二者的先验概率和类条件概率的计算方法都不同。计算后验概率时,对于一个文档d,多项式模型中,只有在d中出现过的单词,才会参与后验概率计算,伯努利模型中,没有在d中出现,但是在全局单词表中出现的单词,也会参与计算,不过是作为“反方”参与的。这里暂不虑特征抽取、为避免消除测试文档时类条件概率中有为0现象而做的取对数等问题。

Part 2.1: 多项式模型

多项式模型

Part 2.2: 伯努利模型

伯努利模型

Part 2.3: 两个模型的区别

4.png

Part 3:在真实数据上的实验结果

和上一篇博客一样,我使用相同的数据,我这里使用在康奈尔大学下载的2M影评作为训练数据和测试数据,里面共同、共有1400条,好评和差评各自700条,我选择总数的70%作为训练数据,30%作为测试数据,来检测sklearn自带的贝叶斯分类器的分类效果。数据的下载链接见前一篇博客,或者直接邮件找我。

def get_dataset():
    data = []
    for root, dirs, files in os.walk(r'E:\研究生阶段课程作业\python\好玩的数据分析\朴素贝叶斯文本分类\tokens\neg'):
        for file in files:
            realpath = os.path.join(root, file)
            with open(realpath, errors='ignore') as f:
                data.append((f.read(), 'bad'))
    for root, dirs, files in os.walk(r'E:\研究生阶段课程作业\python\好玩的数据分析\朴素贝叶斯文本分类\tokens\pos'):
        for file in files:
            realpath = os.path.join(root, file)
            with open(realpath, errors='ignore') as f:
                data.append((f.read(), 'good'))
    random.shuffle(data)

    return data
data = get_dataset()

以上的代码就是读取全部数据,包括训练集和测试集,并随机打乱,返回打乱后的结果。

def train_and_test_data(data_):
    filesize = int(0.7 * len(data_))
    # 训练集和测试集的比例为7:3
    train_data_ = [each[0] for each in data_[:filesize]]
    train_target_ = [each[1] for each in data_[:filesize]]

    test_data_ = [each[0] for each in data_[filesize:]]
    test_target_ = [each[1] for each in data_[filesize:]]

    return train_data_, train_target_, test_data_, test_target_
train_data, train_target, test_data, test_target = train_and_test_data(data)

以上的代码是用来划分训练集和测试集。按照7:3的比例划分。

from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import TfidfVectorizer, HashingVectorizer, CountVectorizer
from sklearn import metrics
from sklearn.naive_bayes import BernoulliNB

nbc = Pipeline([
    ('vect', TfidfVectorizer(
                         
    )),
    ('clf', MultinomialNB(alpha=1.0)),
])
nbc_6.fit(train_data, train_target)    #训练我们的多项式模型贝叶斯分类器
predict = nbc_6.predict(test_data)  #在测试集上预测结果
count = 0                                      #统计预测正确的结果个数
for left , right in zip(predict, test_target):
      if left == right:
            count += 1
print(count/len(test_target))
out: 0.793

和我们上一篇完全手写的贝叶斯分类器相比,使用sklearn自带的多项式模型贝叶斯分类器,使用相同的训练集和测试集,结果后者在测试集上的精度达到了79%,比我们原始手写的精度高出将近10%百分点,效果显而易见,并且训练和分类的速度也大大提高。下面我们使用sklearn自带的伯努利模型分类器进行实验。

nbc_1= Pipeline([
    ('vect', TfidfVectorizer(
                         
    )),
    ('clf', BernoulliNB(alpha=0.1)),
])
predict = nbc_1.predict(test_data)  #在测试集上预测结果
count = 0                                      #统计预测正确的结果个数
for left , right in zip(predict, test_target):
      if left == right:
            count += 1
print(count/len(test_target))
out: 0.781

和多项式模型相比,使用伯努利模型的贝叶斯分类器,在文本分类方面的精度相比,差别不大,我们可以针对我们面对的具体问题,进行实验,选择最为合适的分类器。

Part 4:总结

sklearn真是太强大了,里面分装了绝大部分我们常见的机器学习算法,熟悉这些算法的用法,可以让我们省去重复造轮子的时间,把更多的精力面对我们要解决的问题。所以,如果你不是特别的强迫症患者,还是使用自带的算法,因为这些自带的算法都是经过很多人检验,优化,兼顾速度和精度上的优点。本文选用的训练数据和测试数据都可以从前一篇博客中下载到,如果你嫌麻烦,那么可以直接问我要所有的源代码和数据。

人生苦短,我用python
QQ : 1527927373
EMAIL: 1527927373@qq.com

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351

推荐阅读更多精彩内容