期末作业实验报告:KNN实验对比

工程构建

  • 导入sklearn相关包
import numpy as np
from sklearn import neighbors
  • 定义readDataSet(fileName, isTest)函数,用于加载训练数据,返回特征数据(dataSet)和标签(label)
# fileName: 文件名字
# isTest: =True为测试数据时,只有54列,label直接设0
def readDataSet(fileName, isTest):
    fr = open(fileName,encoding='utf-8')
    lines = fr.readlines()

    numLabels = len(lines) 
    labels = np.zeros(numLabels) #用于存放标签数据
    dateSet = np.zeros([numLabels,54],int) #用于存放特征数据

    # 逐行读取数据到dataSet,labels
    # 总共55列,前54列是样本特征,最后一列是样本类别(label)
    for i in range(numLabels):
        line = lines[i]
        label = 0
        if isTest:  #True:测试集只有54列,最后标签直接设为0
            label = 0
        else:  # False:取最后一列为标签数据
            label = line.split(' ')[54]
        labels[i] = label

        dates = np.zeros(54)
        for j in range(53): # 前54列添加为特征数据
            dates[j] = line.split(' ')[j]
        dateSet[i] = dates

    fr.close()
    return dateSet,labels

添加isTest参数是为了区别训练集(55列)与测试集数据(54列)列数不同,便于交叉验证时,统计错误数量,核算正确率.

  • 加载训练数据
train_dataSet,train_labels = readDataSet('data_train.txt', False)
  • 构建KNN分类器,并调用fit()函数
knn = neighbors.KNeighborsClassifier(algorithm='kd_tree', n_neighbors=3)
knn.fit(train_dataSet,train_labels)
  • 加载测试集,使用构建好的KNN分类器对测试集进行预测
test_dataSet,test_labels = readDataSet('test.txt', False)
res = knn.predict(test_dataSet)
error = 0
for i in range(len(res)):
    if res[i] != test_labels[i]:
        error += 1
print('error:',error,'正确率:',(len(res) - error) / len(res))

邻居数量K影响对比

n_neighbors 1 3 5 7
错误数量 1524 1446 1495 1621
正确率 0.96136 0.96333 0.96209 0.95889

k = 3时正确率最高,当K > 3 后正确率开始下降

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容