第三章 向量空间

3.2.1 向量间的线性关系
线性组合、线性表出、向量与向量组之间的关系

3.2.2 向量组线性相关与线性无关
共线或共面(线性相关)、不共线或不共面(线性无关)

3.3.向量组的极大线性无关组
3.3.1.向量组的秩 rank
(1)向量组 a1, a2, a3, …, as的极大无关组所含的向量个数,称为该向量组的秩,记做r(a1, a2, a3, …, as)。
(2)零向量组成的向量组的秩为0.
(3)

3.5 R^n的标准正交积
1、向量内积的定义(点积)
2、向量内积的性质
3、向量的长度(模)
4、向量的长度的性质
5、向量的单位化(或标准化)
6、向量的正交

问题:
1、p100,定理3.3,向量的个数大于向量的维数,则向量组线性相关的证明是否可以在其他书籍里找到;
2、行列式、矩阵、向量空间到底有什么区别?
https://www.zhihu.com/question/47467377
很简单:在线性代数中所说的向量已经完全抽象化了。翻开你的线性代数书,找到线性空间(又叫向量空间)的定义,看看全体实数矩阵的集合在加法和标量乘法下是否就是线性空间。答案是肯定的。因而其元素,在这里是矩阵,就被称为向量了。
数学学习,从某个角度看,就是概念不断扩展和衍生的过程。当谈到数时,一个小学生首先想到的是1,2,3或者小数和分数,他不会想到复数,而你肯定想到的比他多。向量的概念也是类似的。在你脑袋里根深蒂固的向量的概念必须是那种几何向量,也就是箭头,现在你需要把它扩展了。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,951评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,606评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,601评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,478评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,565评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,587评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,590评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,337评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,785评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,096评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,273评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,935评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,578评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,199评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,440评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,163评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,133评论 2 352

推荐阅读更多精彩内容

  • 数学是计算机技术的基础,线性代数是机器学习和深度学习的基础,了解数据知识最好的方法我觉得是理解概念,数学不只是上学...
    闯王来了要纳粮阅读 22,692评论 2 48
  • 考试形式和试卷结构一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟 二、答题方式 答题方式为闭卷、...
    幻无名阅读 751评论 0 3
  • 一前言 特征值 奇异值 二奇异值计算 三PCA 1)数据的向量表示及降维问题 2)向量的表示及基变换 3)基向量 ...
    Arya鑫阅读 10,525评论 2 43
  • 2017年考研数学一大纲原文 考试科目:高等数学、线性代数、概率论与数理统计 考试形式和试卷结构 一、试卷满分及考...
    SheBang_阅读 621评论 0 7
  • 第一章 行列式 三点内容。 一、计算。 1、数字型行列式计算用展开公式。注意用技巧多创造0:把某一行的k 倍加到第...
    苏醒7阅读 2,491评论 0 2