paxos算法个人理解

paxos算法

常常在有关分布式的文章中看到paxos算法,于是学习了一下此经典算法,下面记录的是我的一些个人理解。如有不正确之处,请指正。

角色有:
proposer acceptor learner

proposer负责提出议案,每次提案都有一个全局编号,编号唯一且递增

一些约束条件:

1.acceptor必须接受第一次的收到的提案
2.一个提案被选中必须要超过半数的acceptor接受
3.acceptor不会接受编号小于acceptedN的提案

acceptor会记录两个值[acceptedN,acceptedK] ,分别是接受提案的编号和接受提案的值。据个人理解,接受提案的值只会在第二阶段accept阶段被记录。

1.第一阶段,prepare阶段

1.a  proposer向大多数的acceptor提交一个提案(不妨设编号为K)

1.b  如果acceptor是第一次收到提案(即acceptedN=null),则记录acceptedN=K,并承诺不会接受编号小于K的提案,返回[K,null].
    如果K的值小于acceptedN,则拒绝。
    如果K的值大于acceptedN:
      1)如果acceptedN=null,则记录acceptedN=K,接受并返回[K,null]
      2)如果acceptedN为非空,则记录acceptedN=K,同样接受,但是返回[K,acceptedK]

2.第二阶段,Accept阶段

2.a  proposer如果一段时间后,未收到超过一半的acceptor的接受应答,则修改K的值,重新进入prepare阶段
    proposer如果收到了超过一半的acceptor的应答:
      1)如果返回的是[K,null],那么Proposer可以选择任何的V值,将[K,V]发送给acceptor(称为accept请求).
      2)如果返回的是[K,acceptedK],那么V=max(acceptedK)],即V的值是收到的应答中编号最大对应的acceptedK, Proposer将[K ,V]发送给acceptor(称为accept请求).

2.b  acceptor收到accept请求后,比较自己的acceptedN 和 accept请求的K值:
      1)如果K > acceptedN,则拒绝
      2)否则,记录acceptedN = K ,acceptedV = V,并返回。

3.第三阶段,Decide阶段

3.a  如果Learner从绝大多数Acceptor节点获得,则发送给所有Learner学习;否则
3.b  如果Learner没能获得绝大多数Acceptor的,则放弃;

下面是一个实例:

假设现在有五个节点的分布式系统,此时 A 节点打算提议 X 值,E 节点打算提议 Y 值,其他节点没有提议。

Paxos-1.png

假设现在 A 节点广播它的提议(也会发送给自己),由于网络延迟的原因,只有 A,B,C 节点收到了。注意即使 A,E 节点的提议同时到达某个节点,它也必然有个先后处理的顺序,这里的“同时”不是真正意义上的“同时”。

Paxos-2.png

A,B,C接收提议之后,由于这是第一个它们接收到的提议,acceptedProposal 和 acceptedValue 都为空。

Paxos-3.png

由于 A 节点已经收到超半数的节点响应,且返回的 acceptedValue 都为空,也就是说它可以用 X 作为提议的值来发生 Accept 请求,A,B,C接收到请求之后,将 acceptedValue 更新为 X。

Paxos-4.png

A,B,C 会发生 minProposal 给 A,A 检查发现没有大于 1 的 minProposal 出现,此时 X 已经被选中。等等,我们是不是忘了D,E节点?它们的 acceptedValue 并不是 X,系统还处于不一致状态。至此,Paxos 过程还没有结束,

Paxos-5.png

此时 E 节点选择 Proposal ID 为 2 发送 Prepare 请求,结果就和上面不一样了,因为 C 节点已经接受了 A 节点的提议,它不会三心二意,所以就告诉 E 节点它的选择,E 节点也很绅士,既然 C 选择了 A 的提议,那我也选它吧。于是,E 发起 Accept 请求,使用 X 作为提议值,至此,整个分布式系统达成了一致,大家都选择了 X。

Paxos-6.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 221,548评论 6 515
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,497评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 167,990评论 0 360
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,618评论 1 296
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,618评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,246评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,819评论 3 421
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,725评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,268评论 1 320
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,356评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,488评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,181评论 5 350
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,862评论 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,331评论 0 24
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,445评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,897评论 3 376
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,500评论 2 359

推荐阅读更多精彩内容

  • 原文:Paxos Made Simple作者:Leslie Lamport时间:01 Nov 2001 1 Int...
    随安居士阅读 1,569评论 1 2
  • Paxos是什么 Paxos算法是基于消息传递且具有高度容错特性的一致性算法,是目前公认的解决分布式一致性问题最有...
    jiangmo阅读 1,538评论 0 6
  • Paxos算法在分布式领域具有非常重要的地位。但是Paxos算法有两个比较明显的缺点:1.难以理解 2.工程实现更...
    Jeffbond阅读 17,332评论 25 87
  • 此文知识来自于:《从Paxos到Zookeeper分布式一致性原理与实践》第二章分布式入门基础知识,由于博主对其理...
    李文文丶阅读 1,939评论 0 0
  • 问题: 基于消息传递通信模型的分布式系统,不可避免的会发生以下错误:进程可能会慢、被杀死或者重启,消息可能会延迟、...
    LaxChan阅读 1,959评论 6 1