爬虫程序

姓名:李昕洲      学号:16030120026

转载自:https://zm8.sm-tc.cn/?src=l4uLj8XQ0IiIiNGIks3M0ZyQktCIlpSW0MvGx8rRl4uS&uid=7c489bcac4552c5cf349189265da1b8f&hid=b5c9635a45773fd6223a0717b163843e&pos=1&cid=9&time=1513253736253&from=click&restype=1&pagetype=0000000000000404&bu=web&query=%E7%88%AC%E8%99%AB&mode=&v=1&uc_param_str=dnntnwvepffrgibijbprsvdsdichei

【嵌牛导读】:相信大家都听过爬虫,但不甚了解,本文将为你介绍。

【嵌牛鼻子】:爬虫程序、网络爬虫、聚焦爬虫、算法。

【嵌牛提问】:什么是搜索引擎爬虫程序?爬虫程序的种类以及分辨?其算法是什么?面临着什么问题?

【嵌牛正文】:

一、什么是搜索引擎爬虫程序

      网络爬虫(又被称为网页蜘蛛,网络机器人,更经常的称为网页追逐者),是一种按照一定的规则,自动的抓取万维网信息的程序或者脚本。另外一些不常使用的名字还有蚂蚁,自动索引,模拟程序或者蠕虫。

      这些处理被称为网络抓取或者蜘蛛爬行。很多站点,尤其是搜索引擎,都使用爬虫提供最新的数据,它主要用于提供它访问过页面的一个副本,然后,搜索引擎就可以对得到的页面进行索引,以提供快速的访问。蜘蛛也可以在web上用来自动执行一些任务,例如检查链接,确认html代码;也可以用来抓取网页上某种特定类型信息,例如抓取电子邮件地址(通常用于垃圾邮件)。

      一个网络蜘蛛就是一种机器人,或者软件代理。大体上,它从一组要访问的URL链接开始,可以称这些URL为种子。爬虫访问这些链接,它辨认出这些页面的所有超链接,然后添加到这个URL列表,可以称作检索前沿。这些URL按照一定的策略反复访问。

      二、爬虫程序的种类以及分辨

      搜索引擎派出他们的爬虫程序去访问、索引网站内容,但是由于搜索引擎派爬虫程序来访会在一定程度上影响网站性能。在你的服务器日志文件中,可见每次访问的路径和相应的 IP 地址,如果是爬虫程序来访, 则user-agent 会显示 Googlebot 或MSNBot 等搜索引擎爬虫程序名称,每个搜索引擎都有自己的user-agent,以下分别列出国内主要的爬虫程序。

特征  

      基于目标网页特征的爬虫所抓取、存储并索引的对象一般为网站或网页。根据种子样本获取方式可分为:

      (1) 预先给定的初始抓取种子样本;

      (2) 预先给定的网页分类目录和与分类目录对应的种子样本,如Yahoo!分类结构等;

      (3) 通过用户行为确定的抓取目标样例,分为:

      a) 用户浏览过程中显示标注的抓取样本;

      b) 通过用户日志挖掘得到访问模式及相关样本。

      其中,网页特征可以是网页的内容特征,也可以是网页的链接结构特征,等等。

      现有的聚焦爬虫对抓取目标的描述或定义可以分为基于目标网页特征,基于目标数据模式和基于领域概念三种。

      基于目标网页特征的爬虫所抓取、存储并索引的对象一般为网站或网页。具体的方法根据种子样本的获取方式可以分为:

      (1)预先给定的初始抓取种子样本;

      (2)预先给定的网页分类目录和与分类目录对应的种子样本,如Yahoo!分类结构等;

      (3)通过用户行为确定的抓取目标样例。其中,网页特征可以是网页的内容特征,也可以是网页的链接结构特征,等等。

      基于目标数据模式

      基于目标数据模式的爬虫针对的是网页上的数据,所抓取的数据一般要符合一定的模式,或者可以转化或映射为目标数据模式。

      基于领域

      另一种描述方式是建立目标领域的本体或词典,用于从语义角度分析不同特征在某一主题中的重要程度。

      策略

      网页的抓取策略可以分为深度优先、广度优先和最佳优先三种。深度优先在很多情况下会导致爬虫的陷入(trapped)问题,目前常见的是广度优先和最佳优先方法。

      广度优先搜索策略

      广度优先搜索策略是指在抓取过程中,在完成当前层次的搜索后,才进行下一层次的搜索。该算法的设计和实现相对简单。在目前为覆盖尽可能多的网页,一般使用广度优先搜索方法。也有很多研究将广度优先搜索策略应用于聚焦爬虫中。其基本思想是认为与初始URL在一定链接距离内的网页具有主题相关性的概率很大。另外一种方法是将广度优先搜索与网页过滤技术结合使用,先用广度优先策略抓取网页,再将其中无关的网页过滤掉。这些方法的缺点在于,随着抓取网页的增多,大量的无关网页将被下载并过滤,算法的效率将变低。

      最佳优先搜索策略

      最佳优先搜索策略按照一定的网页分析算法,预测候选URL与目标网页的相似度,或与主题的相关性,并选取评价最好的一个或几个URL进行抓取。它只访问经过网页分析算法预测为“有用”的网页。存在的一个问题是,在爬虫抓取路径上的很多相关网页可能被忽略,因为最佳优先策略是一种局部最优搜索算法。因此需要将最佳优先结合具体的应用进行改进,以跳出局部最优点。将在第4节中结合网页分析算法作具体的讨论。研究表明,这样的闭环调整可以将无关网页数量降低30%~90%。

      算法

      网页分析算法可以归纳为基于网络拓扑、基于网页内容和基于用户访问行为三种类型。

基于网络拓扑的分析算法

            基于网页之间的链接,通过已知的网页或数据,来对与其有直接或间接链接关系的对象(可以是网页或网站等)作出评价的算法。又分为网页粒度、网站粒度和网页块粒度这三种。

      网页(Webpage)粒度的分析算法

      PageRank和HITS算法是最常见的链接分析算法,两者都是通过对网页间链接度的递归和规范化计算,得到每个网页的重要度评价。PageRank算法虽然考虑了用户访问行为的随机性和Sink网页的存在,但忽略了绝大多数用户访问时带有目的性,即网页和链接与查询主题的相关性。针对这个问题,HITS算法提出了两个关键的概念:权威型网页(authority)和中心型网页(hub)。

      基于链接的抓取的问题是相关页面主题团之间的隧道现象,即很多在抓取路径上偏离主题的网页也指向目标网页,局部评价策略中断了在当前路径上的抓取行为。提出了一种基于反向链接(BackLink)的分层式上下文模型(ContextModel),用于描述指向目标网页一定物理跳数半径内的网页拓扑图的中心Layer0为目标网页,将网页依据指向目标网页的物理跳数进行层次划分,从外层网页指向内层网页的链接称为反向链接。

      网站粒度的分析算法

      网站粒度的资源发现和管理策略也比网页粒度的更简单有效。网站粒度的爬虫抓取的关键之处在于站点的划分和站点等级(SiteRank)的计算。SiteRank的计算方法与PageRank类似,但是需要对网站之间的链接作一定程度抽象,并在一定的模型下计算链接的权重。

      网站划分情况分为按域名划分和按IP地址划分两种。文献[18]讨论了在分布式情况下,通过对同一个域名下不同主机、服务器的IP地址进行站点划分,构造站点图,利用类似PageRank的方法评价SiteRank。同时,根据不同文件在各个站点上的分布情况,构造文档图,结合SiteRank分布式计算得到DocRank。文献[18]证明,利用分布式的SiteRank计算,不仅大大降低了单机站点的算法代价,而且克服了单独站点对整个网络覆盖率有限的缺点。附带的一个优点是,常见PageRank

      造假难以对SiteRank进行欺骗。

      网页块粒度的分析算法

      在一个页面中,往往含有多个指向其他页面的链接,这些链接中只有一部分是指向主题相关网页的,或根据网页的链接锚文本表明其具有较高重要性。但是,在PageRank和HITS算法中,没有对这些链接作区分,因此常常给网页分析带来广告等噪声链接的干扰。在网页块级别(Block?level)进行链接分析的算法的基本思想是通过VIPS网页分割算法将网页分为不同的网页块(page

      block),然后对这些网页块建立page?to?block和block?to?page的链接矩阵,?分别记为Z和X。于是,在pageto?page图上的网页块级别的PageRank为?W?p=X×Z;?在block?to?block图上的BlockRank为W?b=Z×X。已经有人实现了块级别的PageRank和HITS算法,并通过实验证明,效率和准确率都比传统的对应算法要好。

      基于网页内容的网页分析算法

      基于网页内容的分析算法指的是利用网页内容(文本、数据等资源)特征进行的网页评价。网页的内容从原来的以超文本为主,发展到后来动态页面(或称为Hidden

      Web)数据为主,后者的数据量约为直接可见页面数据(PIW,Publicly Indexable Web)的400~500倍。另一方面,多媒体数据、Web

      Service等各种网络资源形式也日益丰富。因此,基于网页内容的分析算法也从原来的较为单纯的文本检索方法,发展为涵盖网页数据抽取、机器学习、数据挖掘、语义理解等多种方法的综合应用。本节根据网页数据形式的不同,将基于网页内容的分析算法,归纳以下三类:第一种针对以文本和超链接为主的无结构或结构很简单的网页;第二种针对从结构化的数据源(如RDBMS)动态生成的页面,其数据不能直接批量访问;第三种针对的数据界于第一和第二类数据之间,具有较好的结构,显示遵循一定模式或风格,且可以直接访问。

      基于文本的网页分析算法

      1)纯文本分类与聚类算法

      很大程度上借用了文本检索的技术。文本分析算法可以快速有效的对网页进行分类和聚类,但是由于忽略了网页间和网页内部的结构信息,很少单独使用。

      2) 超文本分类和聚类算法

      聚焦爬虫的工作流程

      聚焦爬虫的工作流程较为复杂,需要根据一定的网页分析算法过滤与主题无关的链接,保留有用的链接并将其放入等待抓取的URL队列。然后,它将根据一定的搜索策略从队列中选择下一步要抓取的网页URL,并重复上述过程,直到达到系统的某一条件时停止,如图1(b)所示。另外,所有被爬虫抓取的网页将会被系统存贮,进行一定的分析、过滤,并建立索引,以便之后的查询和检索;对于聚焦爬虫来说,这一过程所得到的分析结果还可能对以后的抓取过程给出反馈和指导。


            聚焦爬虫面临的问题


      相对于通用网络爬虫,聚焦爬虫还需要解决三个主要问题:

      (1) 对抓取目标的描述或定义;

      (2) 对网页或数据的分析与过滤;

      (3) 对URL的搜索策略。

      抓取目标的描述和定义是决定网页分析算法与URL搜索策略如何制订的基础。而网页分析算法和候选URL排序算法是决定搜索引擎所提供的服务形式和爬虫网页抓取行为的关键所在。这两个部分的算法又是紧密相关的。

      现有聚焦爬虫对抓取目标的描述可分为基于目标网页特征、基于目标数据模式和基于领域概念3种。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容