HTTP/2做错了什么?刚刚辉煌2年就要被弃用了

最近一段时间以来,关于HTTP/3的新闻有很多,越来越多的国际大公司已经开始使用HTTP/3了。

HTTP/2做错了什么?刚刚辉煌2年就要被弃用了
image.png

所以,HTTP/3已经是箭在弦上了,全面使用只是个时间问题,那么,作为一线开发者,我们也是时候了解下到底什么是HTTP/3,为什么需要HTTP/3了。

于是,我准备开始写这篇文章,但是要想把HTTP/3的事情说清楚,一定绕不过的问题就是HTTP/2,所以写着写着,篇幅越来越多,于是我就把他们分成了上下两篇。

这一篇我们主要来回顾下HTTP/2,然后再来重点看一下HTTP/2存在哪些问题,为什么要被弃用。

HTTP/2 辉煌不在?

虽然HTTP/2标准在2015年5月就以RFC 7540正式发表了,并且多数浏览器在2015年底就支持了。

但是,真正被广泛使用起来要到2018年左右,但是也是在2018年,11月IETF给出了官方批准,认可HTTP-over-QUIC成为HTTP/3。

2018年的时候,我写过一篇文章介绍《HTTP/2到底是什么?》,那时候HTTP/2还是个新技术,刚刚开始有软件支持,短短两年过去了,现在HTTP/3已经�悄然而至了。

根据W3Techs的数据,截至2019年6月,全球也仅有36.5%的网站支持了HTTP/2。所以,可能很多网站还没开始支持HTTP/2,HTTP/3就已经来了。

所以,对于很多网站来说,或许直接升级HTTP/3是一个更加正确的选择。

回顾 HTTP/2

在阅读本文之前,强烈建议大家先阅读下《HTTP/2到底是什么?》这篇文章,这里面介绍了HTTP的历史,介绍了各个版本的HTTP协议的诞生的背景。

当你读到这里的时候,我默认大家对HTTP/2有了一定的基本了解。

我们知道,HTTP/2的诞生,主要是为了解决HTTP/1.1中的效率问题,HTTP/2中最核心的技术就是多路复用技术,即允许同时通过单一的HTTP/2.0连接发起多重的请求-响应消息。

HTTP/2做错了什么?刚刚辉煌2年就要被弃用了

同时还实现了二进制分帧、header压缩、服务端推送等技术。

从HTTP/1.0诞生,一直到HTTP/2,在这24年里,HTTP协议已经做过了三次升级,但是有一个关键的技术点是不变的,那就是这所有的HTTP协议,都是基于TCP协议实现的。

流水的HTTP,铁打的TCP。这是因为相对于UDP协议,TCP协议更加可靠。

虽然在HTTP/1.1的基础上推出HTTP/2大大的提升了效率,但是还是有很多人认为这只是个"临时方案",这也是为什么刚刚推出没多久,业内就开始大力投入HTTP/3的研发与推广了。

而这背后的深层次原因也正是因为他还是基于TCP协议实现的。TCP协议虽然更加可靠,但是还是存在着一定的问题,接下来具体分析下。

HTTP/2 问题

队头阻塞

队头阻塞翻译自英文head-of-line blocking,这个词并不新鲜,因为早在HTTP/1.1时代,就一直存在着队头阻塞的问题。

但是很多人在一些资料中会看到有论点说HTTP/2解决了队头阻塞的问题。但是这句话只对了一半。

只能说HTTP/2解决了HTTP的队头阻塞问题,但是并没有解决TCP队头阻塞问题!

如果大家对于HTTP的历史有一定的了解的话,就会知道。HTTP/1.1相比较于HTTP/1.0来说,最主要的改进就是引入了持久连接(keep-alive)。

所谓的持久连接就是:在一个TCP连接上可以传送多个HTTP请求和响应,减少了建立和关闭连接的消耗和延迟。

HTTP/2做错了什么?刚刚辉煌2年就要被弃用了

引入了持久连接之后,在性能方面,HTTP协议有了明显的提升。

另外,HTTP/1.1允许在持久连接上使用请求管道,是相对于持久连接的又一性能优化。

所谓请求管道,就是在HTTP响应到达之前,可以将多条请求放入队列,当第一条HTTP请求通过网络流向服务器时,第二条和第三条请求也可以开始发送了。在高时延网络条件下,这样做可以降低网络的环回时间,提高性能。

HTTP/2做错了什么?刚刚辉煌2年就要被弃用了

但是,对于管道连接还是有一定的限制和要求的,其中一个比较关键的就是服务端必须按照与请求相同的顺序回送HTTP响应。

这也就意味着,如果一个响应返回发生了延迟,那么其后续的响应都会被延迟,直到队头的响应送达。这就是所谓的HTTP队头阻塞

但是HTTP队头阻塞的问题在HTTP/2中得到了有效的解决。HTTP/2废弃了管道化的方式,而是创新性地引入了帧、消息和数据流等概念。客户端和服务器可以把 HTTP 消息分解为互不依赖的帧,然后乱序发送,最后再在另一端把它们重新组合起来。

HTTP/2做错了什么?刚刚辉煌2年就要被弃用了

因为没有顺序了,所以就不需要阻塞了,就有效的解决了HTTP对队头阻塞的问题。

但是,HTTP/2仍然会存在TCP队头阻塞的问题,那是因为HTTP/2其实还是依赖TCP协议实现的。

TCP传输过程中会把数据拆分为一个个按照顺序排列的数据包,这些数据包通过网络传输到了接收端,接收端再按照顺序将这些数据包组合成原始数据,这样就完成了数据传输。

但是如果其中的某一个数据包没有按照顺序到达,接收端会一直保持连接等待数据包返回,这时候就会阻塞后续请求。这就发生了TCP队头阻塞

HTTP/1.1的管道化持久连接也是使得同一个TCP链接可以被多个HTTP使用,但是HTTP/1.1中规定一个域名可以有6个TCP连接。而HTTP/2中,同一个域名只是用一个TCP连接。

所以,在HTTP/2中,TCP队头阻塞造成的影响会更大,因为HTTP/2的多路复用技术使得多个请求其实是基于同一个TCP连接的,那如果某一个请求造成了TCP队头阻塞,那么多个请求都会受到影响。

TCP握手时长

一提到TCP协议,大家最先想到的一定是他的三次握手与四次关闭的特性。

因为TCP是一种可靠通信协议,而这种可靠就是靠三次握手实现的,通过三次握手,TCP在传输过程中可以保证接收方收到的数据是完整,有序,无差错的。

但是,问题是三次握手是需要消耗时间的,这里插播一个关于网络延迟的概念。

网络延迟又称为 RTT(Round Trip Time)。他是指一个请求从客户端浏览器发送一个请求数据包到服务器,再从服务器得到响应数据包的这段时间。RTT 是反映网络性能的一个重要指标。

[图片上传失败...(image-60e717-1619593860582)]

我们知道,TCP三次握手的过程客户端和服务器之间需要交互三次,那么也就是说需要消耗1.5 RTT。

另外,如果使用的是安全的HTTPS协议,就还需要使用TLS协议进行安全数据传输,这个过程又要消耗一个RTT(TLS不同版本的握手机制不同,这里按照最小的消耗来算)

那么也就是说,一个纯HTTP/2的连接,需要消耗1.5个RTT,如果是一个HTTPS连接,就需要消耗3-4个RTT。

而具体消耗的时长根据服务器和客户端之间的距离则不尽相同,如果比较近的话,消耗在100ms以内,对于用来说可能没什么感知,但是如果一个RTT的耗时达到300-400ms,那么,一次连接建立过程总耗时可能要达到一秒钟左右,这时候,用户就会明显的感知到网页加载很慢。

升级TCP是否可行?

基于上面我们提到的这些问题,很多人提出来说:既然TCP存在这些问题,并且我们也知道这些问题的存在,甚至解决方案也不难想到,为什么不能对协议本身做一次升级,解决这些问题呢?

其实,这就涉及到一个"协议僵化"的问题。

这样讲,我们在互联网上浏览数据的时候,数据的传输过程其实是极其复杂的。

我们知道的,想要在家里使用网络有几个前提,首先我们要通过运行商开通网络,并且需要使用路由器,而路由器就是网络传输过程中的一个中间设备。

中间设备是指插入在数据终端和信号转换设备之间,完成调制前或解调后某些附加功能的辅助设备。例如集线器、交换机和无线接入点、路由器、安全解调器、通信服务器等都是中间设备。

在我们看不到的地方,这种中间设备还有很多很多,一个网络需要经过无数个中间设备的转发才能到达终端用户。

如果TCP协议需要升级,那么意味着需要这些中间设备都能支持新的特性,我们知道路由器我们可以重新换一个,但是其他的那些中间设备呢?尤其是那些比较大型的设备呢?更换起来的成本是巨大的。

而且,除了中间设备之外,操作系统也是一个重要的因素,因为TCP协议需要通过操作系统内核来实现,而操作系统的更新也是非常滞后的。

所以,这种问题就被称之为"中间设备僵化",也是导致"协议僵化"的重要原因。这也是限制着TCP协议更新的一个重要原因。

所以,近些年来,由IETF标准化的许多TCP新特性都因缺乏广泛支持而没有得到广泛的部署或使用!

放弃TCP?

上面提到的这些问题的根本原因都是因为HTTP/2是基于TPC实现导致的,而TCP协议自身的升级又是很难实现的。

那么,剩下的解决办法就只有一条路,那就是放弃TCP协议。

放弃TCP的话,就又有两个新的选择,是使用其他已有的协议,还是重新创造一个协议呢?

看到这里,聪明的读者一定也想到了,创造新的协议一样会受到中间设备僵化的影响。近些年来,因为在互联网上部署遭遇很大的困难,创造新型传输层协议的努力基本上都失败了!

所以,想要升级新的HTTP协议,那么就只剩一条路可以走了,那就是基于已有的协议做一些改造和支持,UDP就是一个绝佳的选择了。

总结

因为HTTP/2底层是采用TCP协议实现的,虽然解决了HTTP队头阻塞的问题,但是对于TCP队头阻塞的问题却无能为力。

TCP传输过程中会把数据拆分为一个个按照顺序排列的数据包,这些数据包通过网络传输到了接收端,接收端再按照顺序将这些数据包组合成原始数据,这样就完成了数据传输。

但是如果其中的某一个数据包没有按照顺序到达,接收端会一直保持连接等待数据包返回,这时候就会阻塞后续请求。这就发生了TCP队头阻塞

另外,TCP这种可靠传输是靠三次握手实现的,TCP三次握手的过程客户端和服务器之间需要交互三次,那么也就是说需要消耗1.5 RTT。如果是HTTPS那么消耗的RTT就更多。

而因为很多中间设备比较陈旧,更新换代成本巨大,这就导致TCP协议升级或者采用新的协议基本无法实现。

所以,HTTP/3选择了一种新的技术方案,那就是基于UDP做改造,这种技术叫做QUIC。

那么问题来了,HTTP/3是如何使用的UDP呢?做了哪些改造?如何保证连接的可靠性?UDP协议就没有僵化的问题了吗?

这些问题我们在下一篇中深入分析。敬请期待!

参考资料:

http3-explained.haxx.se/

baike.baidu.com/item/中间设备/3…

time.geekbang.org/column/arti…

juejin.cn/post/684490…

time.geekbang.org/column/arti…

原文链接:
https://juejin.cn/post/6905925275888926734

</article>

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容

  • HTTP(HyperText Transfer Protocol,缩写:HTTP) 觉得现在对缩写的英文全部知道含...
    zcwfeng阅读 921评论 0 3
  • 【前言】以下源于慕课网《大话HTTP协议》课程笔记 认识HTTP协议 HTTP 基础[https://www.ji...
    liwuwuzhi阅读 1,330评论 0 0
  • 过度到这篇文章可以先看HTTP/2浅析[https://www.jianshu.com/p/f473c31cafb...
    zcwfeng阅读 902评论 0 4
  • 如何让网络数据传输地更快?(合并一些层) 为什么需要QUIC? 中间设备的僵化可能是 TCP 协议使用得太久,也非...
    VictorHong阅读 456评论 0 0
  • 今天感恩节哎,感谢一直在我身边的亲朋好友。感恩相遇!感恩不离不弃。 中午开了第一次的党会,身份的转变要...
    迷月闪星情阅读 10,562评论 0 11