无标题文章

dropout layer的目的是为了防止CNN 过拟合。那么为什么可以有效的防止过拟合呢?
首先,想象我们现在只训练一个特定的网络,当迭代次数增多的时候,可能出现网络对训练集拟合的很好(在训练集上loss很小),但是对验证集的拟合程度很差的情况。所以,我们有了这样的想法:可不可以让每次跌代随机的去更新网络参数(weights),引入这样的随机性就可以增加网络generalize 的能力。所以就有了dropout 。

在训练的时候,我们只需要按一定的概率(retaining probability)p 来对weight layer 的参数进行随机采样,将这个子网络作为此次更新的目标网络。可以想象,如果整个网络有n个参数,那么我们可用的子网络个数为 2^n 。 并且,当n很大时,每次迭代更新 使用的子网络基本上不会重复,从而避免了某一个网络被过分的拟合到训练集上。

那么测试的时候怎么办呢? 一种最naive的方法是,我们把 2^n 个子网络都用来做测试,然后以某种 voting 机制将所有结果结合一下(比如说平均一下下),然后得到最终的结果。但是,由于n实在是太大了,这种方法实际中完全不可行!

所以有人提出,那我做一个大致的估计不就得了,我从2^n个网络中随机选取 m 个网络做测试,最后在用某种voting 机制得到最终的预测结果。这种想法当然可行,当m很大时但又远小于2n时,能够很好的逼近原2n个网络结合起来的预测结果。但是,有没有更好的办法呢? of course!那就是dropout 自带的功能,能够通过一次测试得到逼近于原2^n个网络组合起来的预测能力!

虽然训练的时候我们使用了dropout, 但是在测试时,我们不使用dropout (不对网络的参数做任何丢弃,这时dropout layer相当于进来什么就输出什么)。然后,把测试时dropout layer的输出乘以训练时使用的retaining probability p (这时dropout layer相当于把进来的东东乘以p)。仔细想想这里面的意义在哪里呢??? 事实上,由于我们在测试时不做任何的参数丢弃,如上面所说,dropout layer 把进来的东西原样输出,导致在统计意义下,测试时 每层 dropout layer的输出比训练时的输出多加了【(1 - p)100】% units 的输出。 即 【p100】% 个units 的和 是同训练时随机采样得到的子网络的输出一致,另【(1 - p)*100】% 的units的和 是本来应该扔掉但是又在测试阶段被保留下来的。所以,为了使得dropout layer 下一层的输入和训练时具有相同的“意义”和“数量级”,我们要对测试时的伪dropout layer的输出(即下层的输入)做 rescale: 乘以一个p,表示最后的sum中只有这么大的概率,或者这么多的部分被保留。这样以来,只要一次测试,将原2^n个子网络的参数全部考虑进来了,并且最后的 rescale 保证了后面一层的输入仍然符合相应的物理意义和数量级。

假设x是dropout layer的输入,y是dropout layer的输出,W是上一层的所有weight parameters,

是以retaining probability 为p 采样得到的weight parameter子集。把上面的东西用公式表示(忽略bias):

train:

test:

但是一般写程序的时候,我们想直接在test时用
, 这种表达式。(where

因此我们就在训练的时候就直接训练
。 所以训练时,第一个公式修正为
。 即把dropout的输入乘以p 再进行训练,这样得到的训练得到的weight 参数就是
,测试的时候除了不使用dropout外,不需要再做任何rescale。Caffe 和Lasagne 里面的代码就是这样写的。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测试测...
    七魂之月阅读 4,404评论 1 16
  • 目录 [TOC] 引言 量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来...
    雷达熊阅读 4,605评论 0 2
  • 第5章 引用类型(返回首页) 本章内容 使用对象 创建并操作数组 理解基本的JavaScript类型 使用基本类型...
    大学一百阅读 8,459评论 0 4
  • 转至元数据结尾创建: 董潇伟,最新修改于: 十二月 23, 2016 转至元数据起始第一章:isa和Class一....
    40c0490e5268阅读 5,828评论 0 9
  • 曾经,繁华中游走, 亲昵了万丈红尘, 微风不现,只剩下心海涟漪…… 洗髓的梵音, 抽离了世间的一切 生、老、病、死...
    童童年阅读 1,748评论 0 0