强连通分量算法

计算机系DSA第二次Programming Assignment中第三题涉及到这个算法

【问题描述】

  • 一个有向图中,有一些节点上有5角钱硬币,求问从指定的a顶点走到指定的b顶点,最多总共可以拿到多少硬币

【问题分析】

  1. 一个有向图可以分解为强连通分量(Strongly Connected Component),将每个强连通分量缩成一点之后会得到一张新图,是一个有向无环图。强连通分量中的每个点对两两之间有双向可达的路径。

  2. 故此题等效于强连通分量缩点之后,包含起点的分量到包含终点的分量之间,规划一条可以获得硬币最多的路径。

【强连通量分解算法】
一、Kosaraju 算法

(一)算法内容

主要包含两次DFS

  1. 第一次DFS,称作Visit遍历。从起点开始DFS,每DFS结束一个点,就将它push进一个stack中。于是在栈中,一定有性质:如果DFS树中有从a到达b的通路,那么a一定比b更靠近栈顶(压入栈时是tree_1 tree_2 tree_3 ... tree_n root的后续遍历顺序,root一定在栈顶)。

  2. 从栈顶做第二次DFS,称作Assign遍历。这次遍历顾名思义是给每个节点指派一个代表其所属强连通分量的root。
    具体的,Assign(u, root)可以描述如下:

/// Assign(u, root)
if(u has been assigned root) return;
u.root = root;
for( v if exists_edge(v, u) ) {
    // exists_edge(v, u) 保证了v可以到达u
    // 此时必然有u可以到达v,因为:
    // 假设u不可以到达点v,那么按照Visit操作,必然先到达v,后到达u. 所以会先访问结束u,后访问结束v,这样在栈中应该v更靠近顶部,矛盾.
    Assign(v, root); // 既然u, v可以互相到达,那么都属于root下的强连通分量
}

进行计算时,只需要

for(u in stack) {
    Assign(u, u);
}

即可以给每个顶点标记出所属的强连通分量

(二)Kosaraju算法的拓扑序性质

  • 从缩点后的有向无环图上看,报告强连通分量的顺序就是拓扑排序“零入度算法”给出的图的拓扑排序序列的顺序。

(三)算法复杂度:
如果采用邻接表表示图,那么对图进行两次DFS遍历的复杂度是:



其中需要在第一次遍历时建立原图的反图——即图上所有边反向的图

二、Tarjan 算法

// To be updated

参考资料:
【1】 强连通分量:https://en.wikipedia.org/wiki/Strongly_connected_component
【2】 Kosaraju 算法:https://en.wikipedia.org/wiki/Kosaraju%27s_algorithm

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352