FlowNet:用CNN做光流估计

作者:嫩芽33

出处:http://www.cnblogs.com/nenya33/p/7122701.html

版权:本文版权归作者和博客园共有

转载:欢迎转载,但未经作者同意,必须保留此段声明;必须在文章中给出原文连接;否则必究法律责任

学习了一篇用CNN做光流的paper: FlowNet: Learning Optical Flow with Convolutional Networks,简称FlowNet。

1. 论文题目  FlowNet: Learning Optical Flow with Convolutional Networks

2.背景

为什么想到用CNN做光流:最近提出的CNN架构可以做逐像素预测,比如,语义分割和从单图估计深度。所以本文提出end-to-end训练CNNs用于从图像对中预测光流场。

光流和其他任务的区别:光流估计需要精确的逐像素定位,也需要找到两个输入图像的对应。这不仅涉及到学习图像特征表达,也要学习在两个图像的不同位置匹配这些特征表达。所以从这方面来看,光流估计和CNNs的以前应用基本上不一样。

3. 本文提出构建CNNs,以有监督的学习方式解决光流估计任务。提出两种架构,并做了对比实验:

一种是通用的架构

另外一种是包含一个不同图像位置的特征向量关联层。因为不确定用标准的CNN架构能否解决这个问题,就提出了一个有关联层的架构,用来显式地提供匹配功能。这个架构采用end-to-end训练。思想是利用卷积网络学习多级尺度和抽象化的强大特征的能力,然后帮助他基于这些特征找到实际的对应。关联层上面学习如何从这些匹配中来预测流。令人惊讶的是,用这种方式帮助网络并不是 必要的,甚至是原始的网络都能学会以具有竞争力的准确性来预测光流。

4. 已有光流数据集太小,很多没有标注真实值,本文创建了一个新的光流数据集Flying Chairs,用来充分训练CNN。

5. 网络架构

给定足够的有标签数据,CNN 擅长学习输入-输出关系。所以我们采用end-to-end的学习方法预测光流:给定一个包含图像对真实流的数据集,我们训练一个网络直接从图像中预测x-y流场。但是需要设计合适的架构来实现这个目的。

一个简单的选择是把输入图像堆叠起来,把他们通过一个相当普通网络,让网络自己决定怎样处理图像对从而抽取出运动信息,如图2(top)所示,这个只有卷积组成的架构称为“FlowNetSimple”

原则上,如果这个网络足够大,就能学习预测光流,然而,我们无法保证像SGD那样的局部梯度优化能让网络达到全局最优点,因此,手工设计一个不那么通用、但能用给定数据和优化技巧得到好的性能的架构是有好处的。

一个直接的想法就是:针对两个图像,创建两个独立但相同的处理流,然后在后续进程中把他们结合到一起,如图2(bottom)。在这个架构中,网络需要要先分别产生两个图像的有意义的表达,然后在更高级别把他们结合,这类似于标准的匹配方法中一个先从两个图像的patches抽取特征,然后结合这些特征向量。然而,得到两个图像的特征表达后,网络怎么找二者的对应呢?

在匹配进程,我们在网络中引入了一个“correlation layer”(关联层),在两个特征图中做乘法patch比较,包含这个层的网络结构在图2(bottom)中。给定两个多通道的特征图f1、f2,w、h和c是他们的宽度、高度和通道数,我们的关联层就是让网络比较f1中的每个patch和f2中的每个patch。

现在我们只考虑两个patch的单独比较。第一个图的以x1为中心的patch和第二个图的以x2位中心的patch之间的关联就定义为:

方形patch的尺寸为K=2k+1  (k=0)。公式1等同于神经网络中的一个卷积,但不是用滤波器卷积数据,而是用数据卷积数据,所以,没有可训练的权重。

计算c(x1,x2)涉及到cKK次乘法,比较所有的patch组合涉及到wwhh次计算,所以很难处理前向后向过程。为了计算,我们限制最大位移d用于比较,而且在两个特征图中也引入了步长stride。这样通过限制x2的范围,只在D=2d+1 (d=20)的邻域中计算关联c(x1,x2)。我们用步长s1(1)和s2(2),来全局quantize x1,在以x1为中心的邻域内quantize x2。

理论上,关联的结果是4D的:对两个2D位置的每个组合,我们得到一个关联值,即两个分别包含截取patches值的向量的内积。实际上,我们把相对位置用通道表示,这就意味着我们得到了w*h*D*D大小的输出。在反向过程中,我们求关于每个对应底层blob的导数。

6. Refinement

Pooling会导致分辨率减少,为了提供密集的像素预测,我们需要一种方法来refine  pool后的coarse表达。我们refine的方法如图3所示,主要的是upconvolutional上卷积层,由unpooling(与pooling相反,扩展特征图)和卷积组成。为了做refinement,我们在特征图上用上卷积,然后把它和网络的收缩部分’contractive’ 得到的对应特征图、以及一个上采样的coarses流预测连接起来。这样就能既保留coarser特征图的高层信息,又能保留低层特征图的好的局部信息。每个步骤两次增加分辨率,我们重复这个过程4次,得到预测的流,此时的特征图还是原图的四分之一。

我们发现,与对全图像分辨率做计算量更少的双线性上采样相比,从这个分辨率上做更多的refinement并不能显著提升结果,这个双线性上采样的结果就是网络的最终流预测。

我们替换双线性上采样,采用没有匹配项的变分方法:我们在4次下采样分辨率后开始,迭代20次做coarse-to-fine,把流场变为全分辨率。最后,在全图像分辨率上又做了5次迭代。然后把平滑系数换为

,用文献【26】的方法计算图像边界和对应的检测边界,b(x,y)是各自尺度和像素之间的重采样的thin边界的strength。这种放大方法比简单的双线性上采样计算量大,但是增加了变分方法的优点,得到平滑和亚像素准确的流场。在下文中,用变分法refine的结果加后缀+v。变分结果见图4

7. 训练的参数设置

k=0  d=20  s1=1  s2=2

loss:endpoint error (EPE) ,是光流估计中标准的error measure,是预测光流向量与真实光流向量的欧氏距离在所有像素上的均值。

优化方法:Adam ,无需momentum就能比SGD快速收敛。固定了一些参数:

mini-batches :8

learning rate:开始λ= 1e-4,在第300k次迭代后,每100k次迭代除以2。在FlowNetCorr中λ= 1e-4 会出现梯度爆炸,从较小的学习率λ= 1e-6开始, 在10k次迭代后慢慢增加

达到λ= 1e-4 ,然后再按照刚刚说的减少。

发现测试过程中扩大输入图像能提升性能,尽管最优尺度取决于数据集,我们在所有的任务的每个网络固定了尺度,FlowNetS 没做扩大,FlowNetC 选择1:25的参数

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,029评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,395评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,570评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,535评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,650评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,850评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,006评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,747评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,207评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,536评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,683评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,342评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,964评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,772评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,004评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,401评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,566评论 2 349

推荐阅读更多精彩内容