Deeplearning4j向量处理Word2Vec——水浒【原创】

上一节课相信大家已经训练出来了一个DJ的基础模型,本节课我们学习文本向量的处理,让AI去阅读《水浒传》,大家自行百度下载水浒传.txt。

分词

首先将水浒传分词,本人使用的是

<dependency>
      <groupId>com.hankcs</groupId>
      <artifactId>hanlp</artifactId>
      <version>portable-1.7.3</version>
</dependency>

代码如下:

public static void data(File source, File save) throws IOException {
        BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(  new FileInputStream(source), "UTF-8"));
        if(!save.exists()){
            save.createNewFile();
        }
        OutputStreamWriter writerStream = new OutputStreamWriter( new FileOutputStream(save), "UTF-8");
        BufferedWriter writer = new BufferedWriter(writerStream);
        String line = null;
        long startTime = System.currentTimeMillis();
        while ((line = bufferedReader.readLine()) != null) {
            StringBuilder stringBuilder = new StringBuilder();
            for (Term term : HanLP.segment(line)) {
                if (stringBuilder.length() > 0) {
                    stringBuilder.append(" ");
                }
                stringBuilder.append(term.word.trim());
            }
            writer.write( stringBuilder.toString() + "\n");
        }
        writer.flush();
        writer.close();
        System.out.println(System.currentTimeMillis() - startTime);
        bufferedReader.close();
    }

说明:加载小说,使用HanLP进行逐行分词并将结果以空格隔开,保存到硬盘中。

Word2Vec向量处理

public void train(String filePath) throws FileNotFoundException {
        SentenceIterator iter = new BasicLineIterator(new File(filePath));

        TokenizerFactory t = new DefaultTokenizerFactory();
        t.setTokenPreProcessor(new CommonPreprocessor());

        log.info("Building model....");
        Word2Vec vec = new Word2Vec.Builder().
                minWordFrequency(5)//出现频率小于5的不参与建模
                .iterations(1)
                .layerSize(200)//词向量长度
                .seed(42)
                .windowSize(5)//上下文窗口长度
                .iterate(iter)
                .tokenizerFactory(t)
                .build();
        vec.fit();
        String[] names = {"大哥","林冲","宋江","武松","及时雨","招安","梁山"};
        log.info("Closest Words:");

        for (String name : names) {
            System.out.println(name + ">>>>>>");
            Collection<String> lst = vec.wordsNearest(name, 10);
            System.out.println(lst);
        }
    }

说明:传入分词后的文件地址,把数据传给Word2Vec,调用wordsNearest输出与关键字相近的10个词语。

输出结果

image.png

提醒

AI模型的准确率有很多一部分取决于训练集的整理,在实战操作时多数时候也会花在数据整理上。希望大家能深度理解一下Word2Vec

下一节课讲解图片分类

本人诚接各类商业AI模型训练工作,如果您是一家公司,想借助AI解决当前服务问题,可以联系我。微信号:CompanyAiHelper

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,406评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,732评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,711评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,380评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,432评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,301评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,145评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,008评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,443评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,649评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,795评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,501评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,119评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,731评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,865评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,899评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,724评论 2 354