数据库重点知识点-索引

索引是数据库中必考的知识点,平时工作中的优化也是从索引入手,所以有必要对索引清楚的认识。下面的文章是基于上Java3y 的文章修改而来的,里面的知识点确实太多,某些地方需要深入研究,目前对索引的知识点进行全面熟悉,后续根据实际业务来写对应的知识点。

  • 声明:如果没有说明具体的数据库和存储引擎,默认指的是MySQL中的InnoDB存储引擎

1、索引的相关问题

在之前,我对索引有以下的认知:

  • 索引可以加快数据库的检索速度
  • 经常进行INSERT/UPDATE/DELETE操作就不要建立索引了,换言之:索引会降低插入、删除、修改等维护任务的速度;
  • 索引需要占物理和数据空间
  • 了解过索引的最左匹配原则;
  • 知道索引的分类:聚集索引和非聚集索引;
  • Mysql支持Hash索引和B+树索引两种。

看起来好像啥都知道,但面试让你说的时候可能就GG了:

  • 使用索引为什么可以加快数据库的检索速度啊?
  • 为什么说索引会降低插入、删除、修改等维护任务的速度?
  • 索引的最左匹配原则指的是什么?
  • Hash索引和B+树索引有什么区别?主流的使用哪一个比较多?InnoDB存储都支持吗?
  • 聚集索引和非聚集索引有什么区别?
  • ……..

2、MySQL的基本存储结构

首先Mysql的基本存储结构是(记录都存在页里边):

img
image-20200126123425310
  • 各个数据页可以组成一个双向链表
  • 每个数据页中的记录又可以组成一个单向链表;
    • 每个数据页都会为存储在它里边儿的记录生成一个页目录,在通过主键查找某条记录的时候可以在页目录中使用二分法快速定位到对应的槽,然后再遍历该槽对应分组中的记录即可快速找到指定的记录
    • 其他列(非主键)作为搜索条件:只能从最小记录开始依次遍历单链表中的每条记录
    • 所以说,如果我们select * from user where username = 'Java3y'这样没有进行任何优化的sql语句,默认会这样做:
  • 定位到记录所在的页
    • 需要遍历双向链表,找到所在的页
  • 从所在的页内中查找相应的记录
    • 由于不是根据主键查询,只能遍历所在页的单链表了
      很明显,在数据量很大的情况下这样查找会很慢

3、索引提高检索速度

索引做了些什么可以让我们查询加快速度呢?
其实就是将无序的数据变成有序(相对)

image-20200126123601769

要找到id为8的记录简要步骤:

image-20200126123653855

很明显的是:没有用索引我们是需要遍历双向链表来定位对应的页,现在通过“目录”就可以很快地定位到对应的页上了!

其实底层结构就是B+树,B+树作为树的一种实现,能够让我们很快地查找出对应的记录。

4、索引降低增删改的速度

B+树是平衡树的一种。

什么是平衡树:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。

如果一棵普通的树在极端的情况下,是能退化成链表的(树的优点就不复存在了)

image-20200126123731859

B+树是平衡树的一种,是不会退化成链表的,树的高度都是相对比较低的(基本符合矮矮胖胖(均衡)的结构)【这样一来我们检索的时间复杂度就是O(logn)】!从上一节的图我们也可以看见,建立索引实际上就是建立一颗B+树。

  • B+树是一颗平衡树,如果我们对这颗树增删改的话,那肯定会破坏它的原有结构
  • 要维持平衡树,就必须做额外的工作。正因为这些额外的工作开销,导致索引会降低增删改的速度

B+树删除和修改具体可参考:

5、哈希索引

除了B+树之外,还有一种常见的是哈希索引。

哈希索引就是采用一定的哈希算法,把键值换算成新的哈希值,检索时不需要类似B+树那样从根节点到叶子节点逐级查找,只需一次哈希算法即可立刻定位到相应的位置,速度非常快

  • 本质上就是把键值换算成新的哈希值,根据这个哈希值来定位
image-20200126123832003

看起来哈希索引很牛逼啊,但其实哈希索引有好几个局限(根据他本质的原理可得):

  • 哈希索引也没办法利用索引完成排序
  • 不支持最左匹配原则
  • 在有大量重复键值情况下,哈希索引的效率也是极低的---->哈希碰撞问题。
  • 不支持范围查询

参考资料:

6、InnoDB支持哈希索引吗?

主流的还是使用B+树索引比较多,对于哈希索引,InnoDB是自适应哈希索引的(hash索引的创建由InnoDB存储引擎引擎自动优化创建,我们干预不了)!

image-20200126123912827

参考资料:

7、索引的分类

简单概括:

  • 聚集索引就是以主键创建的索引
  • 非聚集索引就是以非主键创建的索引

区别:

  • 聚集索引在叶子节点存储的是表中的数据
  • 非聚集索引在叶子节点存储的是主键和索引列
  • 使用非聚集索引查询出数据时,拿到叶子上的主键再去查到想要查找的数据。(拿到主键再查找这个过程叫做回表)

非聚集索引也叫做二级索引,不用纠结那么多名词,将其等价就行了~

非聚集索引在建立的时候也未必是单列的,可以多个列来创建索引。

  • 此时就涉及到了哪个列会走索引,哪个列不走索引的问题了(最左匹配原则-->后面有说)
  • 创建多个单列(非聚集)索引的时候,会生成多个索引树(所以过多创建索引会占用磁盘空间)

image-20200126124001250
在创建多列索引中也涉及到了一种特殊的索引-->覆盖索引

  • 我们前面知道了,如果不是聚集索引,叶子节点存储的是主键+列值
  • 最终还是要“回表”,也就是要通过主键查找一次。这样就会比较慢
  • 覆盖索引就是把要查询出的列和索引是对应的,不做回表操作!

比如说:

  • 现在我创建了索引(username,age),在查询数据的时候:select username , age from user where username = 'Java3y' and age = 20
  • 很明显地知道,我们上边的查询是走索引的,并且,要查询出的列在叶子节点都存在!(要查询的列username、age都在叶子节点上)所以,就不用回表了~
  • 所以,能使用覆盖索引就尽量使用吧~

8、索引最左匹配原则

最左匹配原则

  • 索引可以简单如一个列(a),也可以复杂如多个列(a, b, c, d),即联合索引
  • 如果是联合索引,那么key也由多个列组成,同时,索引只能用于查找key是否存在(相等)遇到范围查询(>、<、between、like左匹配)等就不能进一步匹配了,后续退化为线性查找。
  • 因此,列的排列顺序决定了可命中索引的列数

例子:

  • 如有索引(a, b, c, d),查询条件a = 1 and b = 2 and c > 3 and d = 4,则会在每个节点依次命中a、b、c,无法命中d。(很简单:索引命中只能是相等的情况,不能是范围匹配)=、in自动优化顺序。

不需要考虑=、in等的顺序,mysql会自动优化这些条件的顺序,以匹配尽可能多的索引列。

例子:

  • 如有索引(a, b, c, d),查询条件c > 3 and b = 2 and a = 1 and d < 4与a = 1 and c > 3 and b = 2 and d < 4等顺序都是可以的,MySQL会自动优化a = 1 and b = 2 and c > 3 and d < 4,依次命中a、b、c。

9、索引的总结

索引在数据库中是一个非常重要的知识点!上面谈的其实就是索引最基本的东西,要创建出好的索引要顾及到很多的方面:

  • 1、最左前缀匹配原则。这是非常重要、非常重要、非常重要(重要的事情说三遍)的原则,MySQL会一直向右匹配直到遇到范围查询(>,<,BETWEEN,LIKE)就停止匹配。
  • 2、尽量选择区分度高的列作为索引,区分度的公式COUNT(DISTINCT col) / COUNT(*)。表示字段不重复的比率,比率越大我们扫描的记录数就越少。
  • 3、索引列不能参与计算,尽量保持列“干净”。比如,FROM_UNIXTIME(create_time) = '2016-06-06' 就不能使用索引,原因很简单,B+树中存储的都是数据表中的字段值,但是进行检索时,需要把所有元素都应用函数才能比较,显然这样的代价太大。所以语句要写成 : create_time = UNIX_TIMESTAMP('2016-06-06')
  • 4、尽可能的扩展索引,不要新建立索引。比如表中已经有了a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可。
  • 5、单个多列组合索引和多个单列索引的检索查询效果不同,因为在执行SQL时,MySQL只能使用一个索引,会从多个单列索引中选择一个限制最为严格的索引。

10、参考资料

https://zhuanlan.zhihu.com/p/23624390--简单理解索引
https://blog.csdn.net/mysteryhaohao/article/details/51719871--
https://monkeysayhi.github.io/2018/03/06/%E6%B5%85%E8%B0%88MySQL%E7%9A%84B%E6%A0%91%E7%B4%A2%E5%BC%95%E4%B8%8E%E7%B4%A2%E5%BC%95%E4%BC%98%E5%8C%96/---浅谈MySQL的B树索引与索引优化
https://mp.weixin.qq.com/s?__biz=MzI4Njg5MDA5NA==&mid=2247484721&idx=1&sn=410dea1863ba823bec802769e1e6fe8a&chksm=ebd74430dca0cd265a9a91dcb2059e368f43a25f3de578c9dbb105e1fba0947e1fd0b9c2f4ef&token=1676899695&lang=zh_CN#rd

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350