CVPR 2018学习笔记(2018-07-02更新)

workshop

  1. Robust vision challenge 2018
    robust vision.JPG

会议视频

  • 语义分割11个submissions,

第一名 Peter Samuel Rota Bulo (Mapillary): In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

pytorch code

key observation of 当前分割方法

我们关注的是减少memory consume in 训练,因为这可以让我们用larger crops, larger batch size or deeper models.
image.png

image.png
image.png
image.png
结论

大数据集上预训练非常有用!!!

第二名 Marin Oršić (Uni Zagreb): Ladder-DenseNet Architecture for Robust Semantic Segmentation

image.png
image.png
image.png
image.png

Instance segment 3 submissions.

  • Shou-Yao Roy Tseng (NTHU): Non-local RoI for Instance Segmentation

  • Hsien-Tzu Cheng (NTHU): Improved MaskRCNN

  • Invited talk

    • Stefan Roth (TU Darmstadt): Robust Scene Analysis: Energy-based models, deep learning, and something in between
    • Uwe Franke (Daimler AG): 30 Years Fighting for Robustness
    • Judy Hoffman (UC Berkeley): Making our Models Robust to Changing Visual Environments
  1. CV for microscopy image analysis
  • Cell Image Segmentation by Integrating Multiple CNNs

  • Comparison of deep transfer learning strategies for digital pathology

  • Understanding Pixel-to-Label Prediction Model

  • Invited Talk: Life and death decisions- classification, characterization and predictions of death in neuronal models of neurodegenerative disease (Jeremy Linsley (UCSF))

  • 文章列表

  1. Medical Computer Vision and Health Informatics Workshop (CVPR 2018)
  • Deep Learning for Biomedical Imaging: Can We Get Better, Higher or Faster? Tammy Riklin Raviv, PhD
  • Deep Lesion Database and Deep Lesion Graphs on Relationship Learning and Organization of Significant Radiology Image Findings Ke YAN's blog
  • Mine Deeper & Learn Wider: a Perspective on Distilling Radiological Reports for Chest X-ray Analysis Wang Xiaosong

ChestX-ray8 数据贡献者

  • Population imaging analytics: progress, challenges and opportunities
  1. Embedded Vision
    论文列表

感兴趣文章

  1. Tutorial: Interpreting and Explaining Deep Models in Computer Vision

Youtube视频

  1. Interpretable Machine Learning for Computer Vision

MIT 周博磊等人组织

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容