5_语言模型与数据集

语言模型

一段自然语言文本可以看作是一个离散时间序列,给定一个长度为T的词的序列w_1, w_2, \ldots, w_T,语言模型的目标就是评估该序列是否合理,即计算该序列的概率:
P(w_1, w_2, \ldots, w_T).
本节我们介绍基于统计的语言模型,主要是n元语法(n-gram)。在后续内容中,我们将会介绍基于神经网络的语言模型。

语言模型

假设序列w_1, w_2, \ldots, w_T中的每个词是依次生成的,我们有
\begin{align*} P(w_1, w_2, \ldots, w_T) &= \prod_{t=1}^T P(w_t \mid w_1, \ldots, w_{t-1})\\ &= P(w_1)P(w_2 \mid w_1) \cdots P(w_T \mid w_1w_2\cdots w_{T-1}) \end{align*}
例如,一段含有4个词的文本序列的概率
P(w_1, w_2, w_3, w_4) = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_1, w_2, w_3).
语言模型的参数就是词的概率以及给定前几个词情况下的条件概率。设训练数据集为一个大型文本语料库,如维基百科的所有条目,词的概率可以通过该词在训练数据集中的相对词频来计算,例如,w_1的概率可以计算为:
\hat P(w_1) = \frac{n(w_1)}{n}
其中n(w_1)为语料库中以w_1作为第一个词的文本的数量,n为语料库中文本的总数量。
类似的,给定w_1情况下,w_2的条件概率可以计算为:
\hat P(w_2 \mid w_1) = \frac{n(w_1, w_2)}{n(w_1)}
其中n(w_1, w_2)为语料库中以w_1作为第一个词,w_2作为第二个词的文本的数量。

n元语法

序列长度增加,计算和存储多个词共同出现的概率的复杂度会呈指数级增加。n元语法通过马尔可夫假设简化模型,马尔科夫假设是指一个词的出现只与前面n个词相关,即n阶马尔可夫链(Markov chain of order n),如果n=1,那么有P(w_3 \mid w_1, w_2) = P(w_3 \mid w_2)。基于n-1阶马尔可夫链,我们可以将语言模型改写为
P(w_1, w_2, \ldots, w_T) = \prod_{t=1}^T P(w_t \mid w_{t-(n-1)}, \ldots, w_{t-1}) .
以上也叫n元语法(n-grams),它是基于n - 1阶马尔可夫链的概率语言模型。例如,当n=2时,含有4个词的文本序列的概率就可以改写为:
\begin{align*} P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_1, w_2, w_3)\\ &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_2) P(w_4 \mid w_3) \end{align*}
n分别为1、2和3时,我们将其分别称作一元语法(unigram)、二元语法(bigram)和三元语法(trigram)。例如,长度为4的序列w_1, w_2, w_3, w_4在一元语法、二元语法和三元语法中的概率分别为
\begin{aligned} P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2) P(w_3) P(w_4) ,\\ P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_2) P(w_4 \mid w_3) ,\\ P(w_1, w_2, w_3, w_4) &= P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_2, w_3) . \end{aligned}
n较小时,n元语法往往并不准确。例如,在一元语法中,由三个词组成的句子“你走先”和“你先走”的概率是一样的。然而,当n较大时,n元语法需要计算并存储大量的词频和多词相邻频率。
思考:元语法可能有哪些缺陷?

  1. 参数空间过大
  2. 数据稀疏

语言模型数据集

读取数据集

···
with open('/home/kesci/input/jaychou_lyrics4703/jaychou_lyrics.txt') as f:
corpus_chars = f.read()
print(len(corpus_chars))
print(corpus_chars[: 40])
corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')
corpus_chars = corpus_chars[: 10000]
···

建立字符索引

···
idx_to_char = list(set(corpus_chars)) # 去重,得到索引到字符的映射
char_to_idx = {char: i for i, char in enumerate(idx_to_char)} # 字符到索引的映射
vocab_size = len(char_to_idx)
print(vocab_size)

corpus_indices = [char_to_idx[char] for char in corpus_chars] # 将每个字符转化为索引,得到一个索引的序列
sample = corpus_indices[: 20]
print('chars:', ''.join([idx_to_char[idx] for idx in sample]))
print('indices:', sample)

def load_data_jay_lyrics():
with open('/home/kesci/input/jaychou_lyrics4703/jaychou_lyrics.txt') as f:
corpus_chars = f.read()
corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')
corpus_chars = corpus_chars[0:10000]
idx_to_char = list(set(corpus_chars))
char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)])
vocab_size = len(char_to_idx)
corpus_indices = [char_to_idx[char] for char in corpus_chars]
return corpus_indices, char_to_idx, idx_to_char, vocab_size
···

时序数据采样

在训练中我们需要每次随机读取小批量样本和标签。与之前章节的实验数据不同的是,时序数据的一个样本通常包含连续的字符。假设时间步数为5,样本序列为5个字符,即“想”“要”“有”“直”“升”。该样本的标签序列为这些字符分别在训练集中的下一个字符,即“要”“有”“直”“升”“机”,即X=“想要有直升”,Y=“要有直升机”。

现在我们考虑序列“想要有直升机,想要和你飞到宇宙去”,如果时间步数为5,有以下可能的样本和标签:

  • X:“想要有直升”,Y:“要有直升机”
  • X:“要有直升机”,Y:“有直升机,”
  • X:“有直升机,”,Y:“直升机,想”
  • ...
  • X:“要和你飞到”,Y:“和你飞到宇”
  • X:“和你飞到宇”,Y:“你飞到宇宙”
  • X:“你飞到宇宙”,Y:“飞到宇宙去”

可以看到,如果序列的长度为T,时间步数为n,那么一共有T-n个合法的样本,但是这些样本有大量的重合,我们通常采用更加高效的采样方式。我们有两种方式对时序数据进行采样,分别是随机采样和相邻采样。

随机采样

下面的代码每次从数据里随机采样一个小批量。其中批量大小batch_size是每个小批量的样本数,num_steps是每个样本所包含的时间步数。
在随机采样中,每个样本是原始序列上任意截取的一段序列,相邻的两个随机小批量在原始序列上的位置不一定相毗邻。

相邻采样

在相邻采样中,相邻的两个随机小批量在原始序列上的位置相毗邻。

作业



最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
禁止转载,如需转载请通过简信或评论联系作者。