语言模型
一段自然语言文本可以看作是一个离散时间序列,给定一个长度为的词的序列
,语言模型的目标就是评估该序列是否合理,即计算该序列的概率:
本节我们介绍基于统计的语言模型,主要是元语法(
-gram)。在后续内容中,我们将会介绍基于神经网络的语言模型。
语言模型
假设序列中的每个词是依次生成的,我们有
例如,一段含有4个词的文本序列的概率
语言模型的参数就是词的概率以及给定前几个词情况下的条件概率。设训练数据集为一个大型文本语料库,如维基百科的所有条目,词的概率可以通过该词在训练数据集中的相对词频来计算,例如,的概率可以计算为:
其中为语料库中以
作为第一个词的文本的数量,
为语料库中文本的总数量。
类似的,给定情况下,
的条件概率可以计算为:
其中为语料库中以
作为第一个词,
作为第二个词的文本的数量。
n元语法
序列长度增加,计算和存储多个词共同出现的概率的复杂度会呈指数级增加。元语法通过马尔可夫假设简化模型,马尔科夫假设是指一个词的出现只与前面
个词相关,即
阶马尔可夫链(Markov chain of order
),如果
,那么有
。基于
阶马尔可夫链,我们可以将语言模型改写为
以上也叫元语法(
-grams),它是基于
阶马尔可夫链的概率语言模型。例如,当
时,含有4个词的文本序列的概率就可以改写为:
当分别为1、2和3时,我们将其分别称作一元语法(unigram)、二元语法(bigram)和三元语法(trigram)。例如,长度为4的序列
在一元语法、二元语法和三元语法中的概率分别为
当较小时,
元语法往往并不准确。例如,在一元语法中,由三个词组成的句子“你走先”和“你先走”的概率是一样的。然而,当
较大时,
元语法需要计算并存储大量的词频和多词相邻频率。
思考:元语法可能有哪些缺陷?
- 参数空间过大
- 数据稀疏
语言模型数据集
读取数据集
···
with open('/home/kesci/input/jaychou_lyrics4703/jaychou_lyrics.txt') as f:
corpus_chars = f.read()
print(len(corpus_chars))
print(corpus_chars[: 40])
corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')
corpus_chars = corpus_chars[: 10000]
···
建立字符索引
···
idx_to_char = list(set(corpus_chars)) # 去重,得到索引到字符的映射
char_to_idx = {char: i for i, char in enumerate(idx_to_char)} # 字符到索引的映射
vocab_size = len(char_to_idx)
print(vocab_size)
corpus_indices = [char_to_idx[char] for char in corpus_chars] # 将每个字符转化为索引,得到一个索引的序列
sample = corpus_indices[: 20]
print('chars:', ''.join([idx_to_char[idx] for idx in sample]))
print('indices:', sample)
def load_data_jay_lyrics():
with open('/home/kesci/input/jaychou_lyrics4703/jaychou_lyrics.txt') as f:
corpus_chars = f.read()
corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')
corpus_chars = corpus_chars[0:10000]
idx_to_char = list(set(corpus_chars))
char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)])
vocab_size = len(char_to_idx)
corpus_indices = [char_to_idx[char] for char in corpus_chars]
return corpus_indices, char_to_idx, idx_to_char, vocab_size
···
时序数据采样
在训练中我们需要每次随机读取小批量样本和标签。与之前章节的实验数据不同的是,时序数据的一个样本通常包含连续的字符。假设时间步数为5,样本序列为5个字符,即“想”“要”“有”“直”“升”。该样本的标签序列为这些字符分别在训练集中的下一个字符,即“要”“有”“直”“升”“机”,即=“想要有直升”,
=“要有直升机”。
现在我们考虑序列“想要有直升机,想要和你飞到宇宙去”,如果时间步数为5,有以下可能的样本和标签:
-
:“想要有直升”,
:“要有直升机”
-
:“要有直升机”,
:“有直升机,”
-
:“有直升机,”,
:“直升机,想”
- ...
-
:“要和你飞到”,
:“和你飞到宇”
-
:“和你飞到宇”,
:“你飞到宇宙”
-
:“你飞到宇宙”,
:“飞到宇宙去”
可以看到,如果序列的长度为,时间步数为
,那么一共有
个合法的样本,但是这些样本有大量的重合,我们通常采用更加高效的采样方式。我们有两种方式对时序数据进行采样,分别是随机采样和相邻采样。
随机采样
下面的代码每次从数据里随机采样一个小批量。其中批量大小batch_size
是每个小批量的样本数,num_steps
是每个样本所包含的时间步数。
在随机采样中,每个样本是原始序列上任意截取的一段序列,相邻的两个随机小批量在原始序列上的位置不一定相毗邻。
相邻采样
在相邻采样中,相邻的两个随机小批量在原始序列上的位置相毗邻。