Redis 高可靠性体现于:数据尽量少丢失,服务尽量少中断。AOF 和 RDB 保证了前者,而后者,Redis 采用副本冗余量,即从库。
Redis主从库之间采用的是读写分离的方式。
读操作:主库、从库都可以接收;
写操作:首先到主库执行,然后,主库将写操作同步给从库。
主从库同步的原理
当我们启动多个 Redis 实例的时候,它们相互之间就可以通过 replicaof(Redis 5.0 之前使用 slaveof)命令形成主库和从库的关系。replicaof
1,第一阶段是主从库间建立连接、协商同步的过程,主要是为全量复制做准备。在这一步,从库和主库建立起连接,并告诉主库即将进行同步,主库确认回复后,主从库间就可以开始同步了。
具体来说,从库给主库发送 psync 命令,表示要进行数据同步,主库根据这个命令的参数来启动复制。psync 命令包含了主库的 runID 和复制进度 offset 两个参数。
-》runID,是每个 Redis 实例启动时都会自动生成的一个随机 ID,用来唯一标记这个实例。当从库和主库第一次复制时,因为不知道主库的 runID,所以将 runID 设为“?”。
-》offset,此时设为 -1,表示第一次复制。
主库收到 psync 命令后,会用 FULLRESYNC 响应命令带上两个参数:主库 runID 和主库目前的复制进度 offset,返回给从库。从库收到响应后,会记录下这两个参数。
2,在第二阶段,主库将所有数据同步给从库。从库收到数据后,在本地完成数据加载。这个过程依赖于内存快照生成的 RDB 文件。从库接收到 RDB 文件后,会先清空当前数据库,然后加载 RDB 文件。
为了保证主从库的数据一致性,主库会在内存中用专门的 replication buffer,记录 RDB 文件生成后收到的所有写操作。
3,第三个阶段,主库会把第二阶段执行过程中新收到的写命令,再发送给从库。具体的操作是,当主库完成 RDB 文件发送后,就会把此时 replication buffer 中的修改操作发给从库,从库再重新执行这些操作。这样一来,主从库就实现同步了。
replication buffer
Redis和客户端通信也好,和从库通信也好,Redis都需要给分配一个 内存buffer进行数据交互,客户端是一个client,从库也是一个client,我们每个client连上Redis后,Redis都会分配一个client buffer,所有数据交互都是通过这个buffer进行的:Redis先把数据写到这个buffer中,然后再把buffer中的数据发到client socket中再通过网络发送出去,这样就完成了数据交互。所以主从在增量同步时,从库作为一个client,也会分配一个buffer,只不过这个buffer专门用来传播用户的写命令到从库,保证主从数据一致,我们通常把它叫做replication buffer。
(主从库同步中,replication buffer主要是主库用来同步命令给从库的,一旦从库断联,replication buffer也不存在了,但repl_backlog_buffer是存在的)
repl_backlog_buffer
它是为了从库断开之后,如何找到主从差异数据而设计的环形缓冲区,从而避免全量同步带来的性能开销。如果从库断开时间太久,repl_backlog_buffer环形缓冲区被主库的写命令覆盖了,那么从库连上主库后只能乖乖地进行一次全量同步,所以repl_backlog_buffer配置尽量大一些,可以降低主从断开后全量同步的概率。而在repl_backlog_buffer中找主从差异的数据后,如何发给从库呢?这就用到了replication buffer。
只要有从库存在,这个repl_backlog_buffer就会存在。主库的所有写命令除了传播给从库之外,都会在这个repl_backlog_buffer中记录一份,缓存起来。
主从级联模式
一次全量复制中,对于主库来说,需要完成两个耗时的操作:生成 RDB 文件和传输 RDB 文件。
如果从库数量很多,为了避免给主库的资源使用带来压力,我们可以通过“主 - 从 - 从”模式将主库生成 RDB 和传输 RDB 的压力,以级联的方式分散到从库上。
简单来说,我们在部署主从集群的时候,可以手动选择一个从库(比如选择内存资源配置较高的从库),用于级联其他的从库。然后,我们可以再选择一些从库(例如三分之一的从库),在这些从库上执行如下命令,让它们和刚才所选的从库,建立起主从关系。(replicaof命令)
主从库间网络断了
在 Redis 2.8 之前,如果主从库在命令传播时出现了网络闪断,那么,从库就会和主库重新进行一次全量复制,开销非常大。
从 Redis 2.8 开始,网络断了之后,主从库会采用增量复制的方式继续同步。听名字大概就可以猜到它和全量复制的不同:全量复制是同步所有数据,而增量复制只会把主从库网络断连期间主库收到的命令,同步给从库。
当主从库断连后,主库会把断连期间收到的写操作命令,写入repl_backlog_buffer,当从库断连又重连之后,通过psync命令告诉主库自己的slave_repl_offset,然后主库根据自己的master_repl_offset和slave_repl_offset在repl_backlog_buffer中判断是需要全量同步还是把两者之间的命令增量同步给从库(通过replication buffer)。
通过调大repl_backlog_size,可以减少从库在网络断连时全量复制的风险。
主从全量同步使用RDB而不使用AOF的原因:
1、RDB文件内容是经过压缩的二进制数据(不同数据类型数据做了针对性优化),文件很小。而AOF文件记录的是每一次写操作的命令,写操作越多文件会变得很大,其中还包括很多对同一个key的多次冗余操作。在主从全量数据同步时,传输RDB文件可以尽量降低对主库机器网络带宽的消耗,从库在加载RDB文件时,一是文件小,读取整个文件的速度会很快,二是因为RDB文件存储的都是二进制数据,从库直接按照RDB协议解析还原数据即可,速度会非常快,而AOF需要依次重放每个写命令,这个过程会经历冗长的处理逻辑,恢复速度相比RDB会慢得多,所以使用RDB进行主从全量同步的成本最低。
2、假设要使用AOF做全量同步,意味着必须打开AOF功能,打开AOF就要选择文件刷盘的策略,选择不当会严重影响Redis性能。而RDB只有在需要定时备份和主从全量同步数据时才会触发生成一次快照。而在很多丢失数据不敏感的业务场景,其实是不需要开启AOF的。
replication buffer需要注意的地方
如果主从在传播命令时,因为某些原因从库处理得非常慢,那么主库上的这个buffer就会持续增长,消耗大量的内存资源,甚至OOM。所以Redis提供了client-output-buffer-limit参数限制这个buffer的大小,如果超过限制,主库会强制断开这个client的连接,也就是说从库处理慢导致主库内存buffer的积压达到限制后,主库会强制断开从库的连接,此时主从复制会中断,中断后如果从库再次发起复制请求,那么此时可能会导致恶性循环,引发复制风暴,这种情况需要格外注意。
主从一致性
如果从库同步较慢的话,例如从库正在执行bigkey操作,那么复制进度就会落后,此时,从库数据不是强一致性保证。
脑裂
原主库“假故障”,主从切换后等它从假故障中恢复后,又开始处理请求,这样一来,就会和新主库同时存在,形成脑裂。
处理方案:
1,min-slaves-to-write:这个配置项设置了主库能进行数据同步的最少从库数量;
2,min-slaves-max-lag:这个配置项设置了主从库间进行数据复制时,从库给主库发送 ACK 消息的最大延迟(以秒为单位)。
把 min-slaves-to-write 和 min-slaves-max-lag 这两个配置项搭配起来使用,分别给它们设置一定的阈值,假设为 N 和 T。这两个配置项组合后的要求是,主库连接的从库中至少有 N 个从库,和主库进行数据复制时的 ACK 消息延迟不能超过 T 秒,否则,主库就不会再接收客户端的请求了。
即使原主库是假故障,它在假故障期间也无法响应哨兵心跳,也不能和从库进行同步,自然也就无法和从库进行 ACK 确认了。这样一来,min-slaves-to-write 和 min-slaves-max-lag 的组合要求就无法得到满足,原主库就会被限制接收客户端请求,客户端也就不能在原主库中写入新数据了。