汉诺塔问题的求解与分析

一、递归算法介绍

        这篇文章讲的是一个古老而又经典的汉诺塔问题,他是递归算法的一个很好的应用实例。有关递归函数的介绍,在使用递归函数求解字符串的逆置问题文章中介绍过。递归思想是来解决可计算问题的,他的根本特征在于逐步的计算和分解这一计算,通过将某一大问题不断的分解成逻辑上相同的小问题,然后对小问题的求解进而获得最终的答案。使用递归算法的程序在形式上往往都比较简洁明了,这也正是他的价值所在。(更好地阅读体验,请访问程序员在旅途
  计算机使用栈内存结构来从物理上实现递归算法,每一次的递归调用,系统都要将本次调用的返回地址、局部变量、形式参数等值压入到栈中,调用结束之后,再从栈顶取出保存的信息返回给相应的变量并退出栈,再继续执行递归的上一层函数。由于计算机系统给每一个程序分配的栈空间有限,因此,在使用递归求解问题的时候,一定要注意递归的深度,如果递归的次数太多,很可能会出现栈溢出的情况,导致问题求解失败。

二、汉诺塔问题

2.1 问题由来

相传在古印度圣庙中,有一种被称为汉诺塔(Hanoi)的游戏。该游戏是在一块铜板装置上,有三根杆(编号A、B、C),在A杆自下而上、由大到小按顺序放置64个金盘。游戏的目标:把A杆上的金盘全部移到C杆上,并仍保持原有顺序叠好。操作规则:每次只能移动一个盘子,并且在移动过程中三根杆上都始终保持大盘在下,小盘在上,操作过程中盘子可以置于A、B、C任一杆上.


汉诺塔柱子.png

2.2 问题分析

        汉诺塔问题是一种多分支的递归解法,相对于单分支的递归解法(如:阶乘的递归解法)来说,不太容易理解,但是只要把握住递归的思想核心就能够理解这个程序的逻辑。汉诺塔解法总结起来有三步骤:

1) 把 N-1个盘子 移到中转柱
2)把第N个盘子移动到 目标柱
3)把中转柱上面的N-1个盘子借助目前空闲的柱子 移动到 目标柱。

        注意,上面的中转柱,起始柱,是会变化的。每一层递归的逻辑都是,借助"目标柱子",将n-1个 盘子移动到 "中转柱",然后再将最后一个盘子移动到"目标柱子",再将中转柱上的盘子按照同样的规律移动到"目标柱子"。
  无论有多少盘子,在移动的过程中,都是遵循上面的三个步骤。在移动第N个盘子的时候,我们总得要想办法把前面N-1个盘子移到中转柱,然后才能将第N个盘子移到目标柱。在移动第N-1个盘子的时候,也是得要把前面N-2个盘子移到中转柱,然后才能把第N-1个盘子移到目标柱。所以,你可以看到,移动N、N-1、N-2···号盘子到目标柱的思路是一样的,因此,我们可以用递归的思想解决这个问题。

2.3 程序实现

#include<stdio.h>

void hnt(int n, char a,  char b, char c){

   if(n == 1){   // 递归出界条件
   
       printf("%c -- > %c \n", a,c); 
   }else{
       /*
       每一层递归的逻辑都是,借助"目标柱子",将n-1个 盘子移动到  "中转柱",然后再将最后一个盘子移动到"目标柱子".

       注意,这里的中转柱是会变化的。

       */
       hnt(n-1,a,c,b); // ① 借助 c 柱子将a柱子上的n-1个盘子 移动到 b 柱子上

       printf("%c -- > %c \n", a,c); //  ② 将 a柱子上的第n个盘子 移动到 c柱子上

       hnt(n-1, b,a,c);  // ③ 将在b柱子上的n-1个盘子,借助 a 柱子(此时a空闲) 移动到 c 柱子上
   }
}

int main(){
   int n;
   scanf("%d", &n);
   hnt(n,'a','b','c');
   return 0;
}

2.4 程序分析

        通过对汉诺塔问题的分析,你或许会明白,上面的程序是可以求解出问题的答案,但是你可能会有一些疑惑,为什么上面的程序,可以记录下每一步的移动过程?对于这种多分支的递归算法来说,如果像理解单分支递归那样,在脑海中尽可能的穷举出每一步的移动过程,有时候是很困难的,这样也不符合用递归解决问题的原则。但是如果我们实在是想搞明白这每一步具体的过程,怎么办呢?下面用归纳总结的方式,来列出N∈[1,4]的移动过程,分析他的移动规律。
  当N =1时:


n=1.png

当N =2时:

n=2.png

当N =3时:
  通过N=1,N=2的求解,我们可以推断出,N =3的时候,会有 3 + 1 + 3 = 7次移动。3个盘子的话,我们得要先把前两个盘子移到B,然后把第三个盘子移到C,最后再把B上面的两个盘子,借助A移动到C。上面的两个盘子,先是移动到B,然后又移动到C,这两个过程,需要的移动次数是一样的,移动逻辑也是一样的。


n=3.png

当N =4时:
  还是前面的逻辑,N=4的时候,会有 7 + 1 + 7 = 15次移动。思路和前面一样, 把前3个盘子,借助C移到B,再把第四个盘子移到C。


n=4.png

        通过前面的几个演示能看得出来,求解 N 和求解 N-1 的思路完全一致,这是保证可以使用递归算法的核心所在。
  A、B、C只是形式上的标注,本质上面的意义是,起始、中转、目标。在移动过程中,如果要保证小的在上,大的在下,我们就必须得要借助中转,才可以实现,至于中转是谁,这和(N-1)这一堆盘子所在的位置有关。
  在写递归程序的时候,需要注意的点如下图所示:


程序注意点.png

三、总结

        递归算法的核心在于递推逻辑,因此,使用递归算法求解问题,我们不必要纠结每一层函数的具体操作是什么样子的,而要把核心放在逻辑上,如果问题的求解是可归纳的,有递推关系在里面,并且是可计算的,那么逻辑上就不存在问题,一般也就可以使用递归算法来求解。
  递归有单分支的递归和多分支递归,单分支相对来说简单理解一些,比如下面的递归程序

int f(int n) //求n的阶乘
{
  int fac;
  if (n == 0 || n == 1)
    fac = 1;
  else
    fac = f(n - 1) * n;
  return fac;
}

        多分支的如汉诺塔、二叉树遍历等,就比较难理解一些,但是思想是一样的。
  计算机执行递归程序的时候,对每一层函数的调用,是使用栈数据结构来进行现场保护的,因此在编写递归程序的时候,要注意递归的深度,防止出现 Stack Overflow 异常。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,907评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,987评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,298评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,586评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,633评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,488评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,275评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,176评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,619评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,819评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,932评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,655评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,265评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,871评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,994评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,095评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,884评论 2 354