解释:两个鸡蛋一样,只有在达到某个楼层高度时,才会摔碎。可以假设这个摔碎临界楼层是N。
- 最笨的方法:只用一个鸡蛋遍历——N次尝试
- 一个鸡蛋遍历那就是从一楼顶开始,逐层尝试,如果摔不碎那就继续往上层尝试,直到N层摔碎了。这样就尝试了N次,而且浪费了一个鸡蛋的使用。
- 二分查找——两个鸡蛋,鸡蛋A用来二分尝试,鸡蛋B用来在A摔碎后做局部遍历尝试
- 鸡蛋A用来做二分尝试,即第一次从50层扔下。
- 最悲观情况,直接摔碎,说明N在1-50之间,那么鸡蛋B也只能从1开始遍历,回到了第一种情况(最多尝试次数也是N)。
- 乐观情况,鸡蛋A没摔碎,接下来就可以尝试从75层扔下,碎了那就是N在51-74之间了。尝试次数为1+1+(74-51)=25次。
- 更乐观情况,鸡蛋A在75层也没碎,接下来可以在87层扔下;A碎了则N在76-86之间,故是需要1+1+1+(86-76)=13次。
- A没碎,接下来在93层扔下;A碎了则N在88-92之间,故需要扔1+1+1+1+(92-88)=8次。
- A没碎,接下来在96层扔下;A碎了则N在94-95之间,故需要扔1+1+1+1+1+(95-94)=6次。
- A没碎,接下来在98层扔下;A碎了则N在97-98,故需要扔1+1+1+1+1+1=6次。
- A没碎,则A在99-100之间,如需要扔6+1=7次。
- 可见,用二分法结果很不稳定,特别是N小于50时最糟糕(甚至会比第一种直接遍历的还要多一次)。N越大越好找,需要尝试的次数越少。
如果这个题目换成鸡蛋个数不限制,那就是用二分法最快了。 - 平均分割楼层法——假设总共扔X次,其中鸡蛋A扔了X1次,鸡蛋B扔了X2次
- X=X1+X2
- 鸡蛋A用来做楼层平均分割,大步尝试;鸡蛋B作为每一小部分的遍历小步尝试。
- 假设将100层平均分为10部分,即鸡蛋A分别在第10、20、30、40、50、60、70、80、90、100层扔;则鸡蛋B在A摔碎后在细分的那个楼层小步遍历寻找即可。如此的平均尝试次数又要比二分查找更好。
- 但问题是如何找到最优的平均分割n段,X1=n,X2=100/n。X=n+100/n,可见n平方=100即n等于10时,X=20。
- 若能在后面每一段更准确地分析出应该分的楼层数(如图2),而不是平均10层一段(如图1),会有更优的效果。下一个方法就是这样。
- 假设法——假设最多允许尝试X次,问能尝试到的最高的楼层。
- 第1次从X楼扔下来。因为即使摔坏了,也可以用另一个鸡蛋遍历X-1次找到该楼层。
- 第2次(还剩X-1次尝试次数)可以从X+(X-1)层扔下来。因为即使摔碎了,也可以用另一个鸡蛋遍历X-1-1次找到该楼层。
- 同理,第3次,可以从X+(X-1)+(X-2)层扔下来。
- 第X次。可以从第X+(X-1)+(X-2)+...+(X-(X-2))+1层扔下来,这就是最高可能尝试到的楼层X*(X+1)/2,下面所有的楼层都可以在X次尝试中到达。
- 当最高楼层为100时,可列出不等式:最高可能尝试到的楼层X(X+1)/2 > 100,解出X=14次。这就是最稳定的最快寻找到该楼层的扔鸡蛋次数。也就是说第一次扔鸡蛋要从14楼开始扔。14+13+12+11+...+2+1 = 105层,也就是14次尝试一定可以在1-105层中找到那个第N层。推出了公式X(X+1)/2后,要想编程求任意总楼层条件下,就都很方便了。
- 动态规划法——找最优解常用方法
在我们编程解决问题的过程中,如果遇到最优问题的时候,往往可以先尝试一下动态规划的方法。而动态规划的方法,首要的我们要找到构成这个最优问题的最优子问题。所以,下面的分析,我们首先尝试动态规划的方法,如何解决这个问题,这也是典型的程序员的思路;其次,在众多的问题当中,有不少可以直接归结为数学方程式,如果我们能够写出数学方程式,那么,答案将是更加的简洁、美妙(比如上一种方法推导出来的公式)。
-
基于动态规划的方法
- 前面提到,若要采用动态规划的方法,最重要的是要找到子问题。做如下面的分析,假设F{n}表示从第n层楼扔下鸡蛋,找到不摔碎鸡蛋楼层的最少尝试次数。第一个鸡蛋可能从第i层扔下,有两个情况:
- 碎了,第二个鸡蛋,需要从第一层开始试验,最多要尝试i-1次。
- 没碎,两个鸡蛋,还有n-i层。这个就是子问题了f[n-i] 。
所以,当第一个鸡蛋,由第i个位置落下的时候,要尝试的次数为f[i]= 1 + max(i - 1, f[n-i])用max是确保一定可以在这么多次内找到。那么对于每一个i对f(i)进行比较,非最小的f(i),就是F{n}的值。状态转移方程如下: F{n} = min f[i] = min(1 + max(i - 1, f[n-i]) ) 其中: i的范围为(1, n), f[1] = 1 完毕。
推广动态规划的方法,可以推广为n层楼,m个鸡蛋。如下分析: 假设f{n,m}表示n层楼、m个鸡蛋时找到最高楼层的最少尝试次数。当第一个鸡蛋从第i层扔下,如果碎了,还剩m-1个鸡蛋,为确定下面楼层中的安全楼层,还需要f{i-1,m-1}次,找到子问题;不碎的话,上面还有n-i层,还需要f[n-i,m]次,又一个子问题。 状态转移方程如下: f{n, m} = min(1 + max(f{i - 1, m - 1}, f{n - i, m}) ) 其中: i为(1, n), f{i, 1} = 1
-
拓展一下,如果不是100楼层,是N楼层,曾怎么计算呢?
-
再次拓展,如果我们有三个鸡蛋,有k次机会,我们最大可以测试多少层楼?
如果我们有M个鸡蛋,有k次机会,我们最大可以测试多少层楼?