哔哩哔哩:2021 算法岗(实习)
问题
Python列表与元组的区别
元组一旦初始化后,就不可以再改变(无法直接修改元组内对象的指针或者增删元素,但是可以调用内部元素的方法进行操作,如list.append
),但是列表没有这些限制。-
深浅拷贝的区别
是否会对对象内部的对象递归地拷贝(内部对象指针指向原地址还是新的地址)。
-
类和对象的区别
类主要定义了方法,可以当做行为的模板;对象是数据的载体,并可以执行类中定义的行为。
-
装饰器的原理
装饰器本身就是一个接收方法为参数的方法,可以在内部调用被装饰的方法前后执行其他逻辑。
-
常见的排序算法
冒泡、插入、归并、快排、堆排序、基数排序等。
-
归并算法的思想与时间复杂度
思想:分治, 路归并算法每次将 个元素的排序问题分解成多个 规模的子问题,在子问题求解完以后再对子问题的解进行合并,可递归地进行实现。
时间复杂度:子问题数量: ,分解与合并的复杂度 ,整体的复杂度: 。
-
数组与链表在原理、操作时间复杂度上的区别,以及应用场景
原理:二者都拥有线性的逻辑结构,区别主要在物理结构上,数组的内存大小固定且连续,链表中元素在内存中不连续。
操作时间复杂度:
- 读取、修改:数组 , 链表 ;
- 增、删:数组 (需要批量移动内部元素),链表 。
应用场景:
数组:数据量已知、固定,且读取和修改操作的需求量大于增删操作的需求量;
链表:数据量未知,且增删操作较多。
-
如何用两个栈实现队列
假设有两个栈 A、B:
对于队列的入队操作,直接全部压到栈 A 的顶部,此时 A 中元素的顺序与入队的顺序相反,初始时 B 为空栈。
-
一旦遇到出队操作:
- 如果 B 为空,则将 A 中的元素全部依次出栈并放入 B 中,此时 B 中元素的顺序和入队的顺序是一致的,再将 B 中元素出栈;
- 如果 B 不为空,则直接从 B 中将元素出栈;
- 出队操作完成后,不需要将 B 中元素再装回 A 中,可直接用于下次出栈。
-
梯度爆炸与梯度消失的原因与理论基础
理论基础:反向传播时的链式求导。
原因:
- 根本原因:反向传播时,如果导数权重一直大于 ,则在链式求导的过程中梯度会越来越大,最终导致梯度爆炸;相反,如果导数权重一直小于 则会导致梯度越来越小,最终导致梯度消失。
- 导致梯度问题的直接原因可能是:
- 使用了不适当的激活函数,如 sigmoid 容易导致梯度消失;
- 模型复杂,深度过大,导致求导链过长;
- 初始的特征、权重过大,导致输出值方差较大,最终导致梯度过大。
-
如何处理梯度爆炸与梯度消失
- 处理梯度爆炸:
- 对于梯度本身,可以考虑使用梯度裁剪限制每次优化的幅度区间;
- 使用 L1、L2 正则化,每次在优化时对参数施加一个正则惩罚项,防止优化幅度过大。
- 处理梯度消失:
- 对于线性的数据,使用 LSTM 中的“门控”(gate)思想,每次“记住”前面一些时间步的“记忆”,防止梯度消失。
- 通用的优化手段:
- 选择更好的激活函数,如 ReLU、LeakyReLU 等;
- 使用残差连接的思想设计模型,提供降低模型复杂度的可能性;
- 预训练+微调,每次仅对一层模块进行训练优化并固定其他层,从而得到一层模块的局部最优解,在得到众多的局部最优参数后,通过全局的反向传播进行微调得到全局最优;
- 对不同的模块使用不同的学习率;
- 使用 BatchNorm 等正则化方法,对层的输入进行优化,使得训练更加稳定;
- 处理梯度爆炸:
-
如何处理过拟合
- 从网络结构层次的角度,可以采用残差连接的方式,提供降低模型复杂度的可能;
- 从正向传播的角度,可以使用 Dropout的方式,每次丢弃一部分特征,防止参数过分依赖训练数据,增加参数对数据集的泛化能力;
- 从反向传播的角度,可以通过正则化的方式,每一次计算loss时增加一个参数相关的惩罚项,缩放参数值使输出的区间更为稳定合理;
- 从数据处理的角度,通过进行 shuffle 打乱数据的顺序、对数据进行增广(增加噪音、变换等),避免参数对数据的依赖,提高泛化能力;
- 从训练的角度,可以考虑使用 EarlyStopping 在模型持续优化一定 Epoch 后便提前停止训练。
-
CNN
卷积神经网络,用于对规则的欧氏空间内的数据进行处理:通过一个共享的卷积核(kernel),每次在输入的矩阵中按照设定的卷积核大小、步长(Stride)和填充(padding)进行移动,输出为一个新的矩阵。即使卷积核为 的,其计算也与 MLP 不同:MLP是不同维度对应不同的权重;而 的卷积核是共享的,即所有维度共享同一个权重。
-
开放思考题:有哪几种方法(思路)来判断APP的截图中是否存在弹窗
基本就是 CV 相关的领域了,不涉及具体技术细节仅从解决思路来回答的话,主要可以从以下几个角度(训练 CV 相关的模型)进行检测:
- 边框:大部分弹窗以及其中的互动按钮都包含一些规则的边框(如矩形、圆角矩形、圆形)等,可提取这些边框进行识别,但是如果背景中存在边框或者遇到不规则的弹窗(如有其他附加物)则难以准确识别;
- 颜色:从弹窗的设计机制来说,一般在弹窗出现时会通过降低背景界面的明度、饱和度等方式让用户聚焦于弹窗,从颜色的角度可以进行识别;
- 文本:使用 OCR 相关功能提取截图中的文本,并判断是否属于弹窗相关的文本(如“关闭”、“确定”、“注意”、“通知”等);
- 位置:弹窗一般位于截图的中间、中上等用户容易聚焦的位置,重点关注这些位置的信息可以提高弹窗识别的准确度。
将以上角度综合进行考虑就能基本覆盖大部分弹窗场景。
总结
面试所考察的知识点不深且较广(但也属于正常该掌握的范围),包含机器学习与 Python、算法、数据结构的基础。
面试的部门偏向通过 AI 算法为测试和研发提供技术支持,所以面试中涉及到的开放思考题也和测试的业务有关。