经验模态分解 (Empirical Mode Decomposition)

Author: Aeo 转载请注明出处

算法背景

经验模态分解(Empirical Mode Decomposition,缩写EMD)是由黄锷(N. E. Huang)在美国国家宇航局与其他人于1998年创造性地提出的一种新型自适应信号时频处理方法,特别适用于非线性非平稳信号的分析处理。


算法过程分析

  • 筛选(Sifting)
    1. 求极值点 通过Find Peaks算法获取信号序列的全部极大值极小值
    2. 拟合包络曲线 通过信号序列的极大值极小值组,经过三次样条插值法获得两条光滑的波峰/波谷拟合曲线,即信号的上包络线下包络线
    3. 均值包络线 将两条极值曲线平均获得平均包络线
    4. 中间信号 原始信号减均值包络线,得到中间信号
    5. 判断本征模函数(IMF) IMF需要符合两个条件:
      1)在整个数据段内,极值点的个数和过零点的个数必须相等或相差最多不能超过一个。
      2)在任意时刻,由局部极大值点形成的上包络线和由局部极小值点形成的下包络线的平均值为零,即上、下包络线相对于时间轴局部对称。
  • IMF 1 获得的第一个满足IMF条件的中间信号即为原始信号的第一个本征模函数分量IMF 1
    (由原数据减去包络平均后的新数据,若还存在负的局部极大值和正的局部极小值,说明这还不是一个本征模函数,需要继续进行“筛选”。)
  • 使用上述方法得到第一个IMF后,用原始信号减IMF1,作为新的原始信号,再通过上述的筛选分析,可以得到IMF2,以此类推,完成EMD分解。

1. 求极值点

from scipy.signal import argrelextrema

# 通过Scipy的argrelextrema函数获取信号序列的极值点
data = np.random.random(100)
max_peaks = argrelextrema(data, np.greater)
min_peaks = argrelextrema(data, np.less)

# 绘制极值点图像
plt.figure(figsize = (18,6))
plt.plot(data)
plt.scatter(max_peaks, data[max_peaks], c='r', label='Max Peaks')
plt.scatter(min_peaks, data[min_peaks], c='b', label='Max Peaks')
plt.legend()
plt.xlabel('time (s)')
plt.ylabel('Amplitude')
plt.title("Find Peaks")
极大值与极小值点

2. 拟合包络函数

这一步是EMD的核心步骤,也是分解出本征模函数IMFs的前提。

from scipy.signal import argrelextrema

data = np.random.random(100)-0.5
index = list(range(len(data)))

# 获取极值点
max_peaks = list(argrelextrema(data, np.greater)[0])
min_peaks = list(argrelextrema(data, np.less)[0])

# 将极值点拟合为曲线
ipo3_max = spi.splrep(max_peaks, data[max_peaks],k=3) #样本点导入,生成参数
iy3_max = spi.splev(index, ipo3_max) #根据观测点和样条参数,生成插值

ipo3_min = spi.splrep(min_peaks, data[min_peaks],k=3) #样本点导入,生成参数
iy3_min = spi.splev(index, ipo3_min) #根据观测点和样条参数,生成插值

# 计算平均包络线
iy3_mean = (iy3_max+iy3_min)/2

# 绘制图像
plt.figure(figsize = (18,6))
plt.plot(data, label='Original')
plt.plot(iy3_max, label='Maximun Peaks')
plt.plot(iy3_min, label='Minimun Peaks')
plt.plot(iy3_mean, label='Mean')
plt.legend()
plt.xlabel('time (s)')
plt.ylabel('microvolts (uV)')
plt.title("Cubic Spline Interpolation")
三次样条插值法拟合包络函数

用原信号减去平均包络线即为所获得的新信号,若新信号中还存在负的局部极大值和正的局部极小值,说明这还不是一个本征模函数,需要继续进行“筛选”。


第一次筛选后的新信号与原始信号对比

获取本征模函数(IMF)

def sifting(data):
    index = list(range(len(data)))

    max_peaks = list(argrelextrema(data, np.greater)[0])
    min_peaks = list(argrelextrema(data, np.less)[0])

    ipo3_max = spi.splrep(max_peaks, data[max_peaks],k=3) #样本点导入,生成参数
    iy3_max = spi.splev(index, ipo3_max) #根据观测点和样条参数,生成插值

    ipo3_min = spi.splrep(min_peaks, data[min_peaks],k=3) #样本点导入,生成参数
    iy3_min = spi.splev(index, ipo3_min) #根据观测点和样条参数,生成插值

    iy3_mean = (iy3_max+iy3_min)/2
    return data-iy3_mean


def hasPeaks(data):
    max_peaks = list(argrelextrema(data, np.greater)[0])
    min_peaks = list(argrelextrema(data, np.less)[0])
    
    if len(max_peaks)>3 and len(min_peaks)>3:
        return True
    else:
        return False


# 判断IMFs
def isIMFs(data):
    max_peaks = list(argrelextrema(data, np.greater)[0])
    min_peaks = list(argrelextrema(data, np.less)[0])
    
    if min(data[max_peaks]) < 0 or max(data[min_peaks])>0:
        return False
    else:
        return True

    
def getIMFs(data):
    while(not isIMFs(data)):
        data = sifting(data)
    return data


# EMD函数
def EMD(data):
    IMFs = []
    while hasPeaks(data):
        data_imf = getIMFs(data)
        data = data-data_imf
        IMFs.append(data_imf)
    return IMFs


# 绘制对比图
data = np.random.random(1000)-0.5
IMFs = EMD(data)
n = len(IMFs)+1

# 原始信号
plt.figure(figsize = (18,15))
plt.subplot(n, 1, 1)
plt.plot(data, label='Origin')
plt.title("Origin ")

# 若干条IMFs曲线
for i in range(0,len(IMFs)):
    plt.subplot(n, 1, i+2)
    plt.plot(IMFs[i])
    plt.ylabel('Amplitude')
    plt.title("IMFs "+str(i+1))

plt.legend()
plt.xlabel('time (s)')
plt.ylabel('Amplitude')
迭代分解结果

至此就完成了经验模态分解EMD的基本过程。

另代码文件PyEMD.py附在Github


Reference

【百度百科】经验模态分解

【知乎】这篇文章能让你明白经验模态分解(EMD)——基础理论篇

【知乎】这篇文章能让你明白经验模态分解(EMD)——IMF的物理含义

【CSDN】Python实现线性插值和三次样条插值

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,544评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,430评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,764评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,193评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,216评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,182评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,063评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,917评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,329评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,543评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,722评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,425评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,019评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,671评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,825评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,729评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,614评论 2 353

推荐阅读更多精彩内容