浅谈运营工作中的贝叶斯陷阱

贝叶斯定理广泛应用于各类场景,如机器学习、大数据挖掘、工程分析、金融投资等,本文仅探讨贝叶斯定理在运营数据分析中的一点思考。

一、什么是贝叶斯定理

贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。

频率主义学派认为参数是客观存在的,即使是未知的,但都是固定值,不会改变。频率学派认为进行一定数量的重复实验后,如果出现某个现象的次数与总次数趋于某个值,那么这个比值就会倾向于固定。

最简单的例子就是抛硬币了,在理想情况下,我们知道抛硬币正面朝上的概率会趋向于1/2,而贝叶斯提出了一种截然不同的观念,他认为概率不应该这么简单地计算,而需要加入先验概率的考虑。先验概率也就是说,我们先设定一个假设,然后通过一定的实验来证明/推翻这个假设,这就是后验。随后,旧的后验会成为一个新的先验。

以下便是贝叶斯公式:

P(A|B) 是在B发生的情况下,事件A发生的概率;

P(A)是A发生的概率;

P(B|A)是在A发生的情况下B发生的概率;

P(B) 是B发生的概率。

简单讲,贝叶斯定律是在已知某条件的前提下,推算某事件发生的概率。

二、贝叶斯定律的应用

贝叶斯方法对于由证据的积累来推测一个事物发生的概率具有重大作用,它告诉我们当我们要预测一个事物,我们需要的是首先根据已有的经验和知识推断一个先验概率(或者根据事实引入先验概率),然后在新证据不断积累的情况下调整这个概率。

我们以下面的例子,来一窥贝叶斯定律的妙用。

如果某种疾病的发病率为千分之一,现在有一种试纸,他在患者得病的情况下,有99%的准确率判断患者得病;在患者没得病的情况下,有5%的可能误判患者得病。现在试纸说一个患者得了病,那么患者真的得病的概率是多少?(在看下文之前大家先凭感觉预估一下,真正的得病概率应该很高吧?)

为了方便理解,我们先通过一个树形图进行判断,我们假设有100000的人群。

通过以上树状图,逻辑就会比较清晰。在题干给出的条件下,患者真正的得病率是多少呢?用真正得病的99作为分子,测出有病的4995+99作为分母,99÷(99+4995)=1.94%

在此案例中,用贝叶斯公式计算:

P(A1|B)代表试纸查出患病前提下,真实的患病概率;

P(A1)代表真实患者概率,即0.1%;

P(A2)代表健康人群概率,即99.9%;

P(B)代表试纸查出患者的概率;

P(B|A1)为真实患者条件下试纸查出患者的概率,即99%;

P(B|A2)为健康人群条件下试纸误判为患者的概率,即5%;

代入公式,也可得出结论。

这个案例就是贝叶斯定律比较经典的一个应用,在已知前提下测算事件发生的概率。

三、运营数据分析中的贝叶斯陷阱

1. 错误的判断

通过以上案例大家对贝叶斯定律都有了一定的了解,但是普及概念不是咱的本意,贝叶斯在运营工作中有什么应用呢?说实话,本来我对贝叶斯在运营工作中能有多大的作用并没有概念,直到我在前段时间的一个活动复盘中发下了下面的案例。

我们有一个王牌训练营活动,每期活动我们会选择一个IT技术方向,设计系列课程,每日引导用户打卡学习,完成学习后领取奖品。活动分为招募期,课程期两个时段。

在招募过程我们会投放诸多付费or免费渠道,如我们自建的流量池、微信矩阵、外部大站、论坛、SEM等,所有活动在结束后我们都会做复盘报告。

在上一期复盘的过程中我们发现了一个有趣的数据,参与我们训练营的用户画像中,工作经验为1-3年的开发者居多,占比在70%以上。因此,我们这一期的活动复盘报告中有了如下分析:

参与活动的开发者以1-3年工作经验者居多,说明我们的课程内容对此类开发者更具有吸引力,可以针对此类开发者,做课程设计上的优化。同时,说明工作1-3年的开发者对于自我提升上的需求更为强烈,后续可以在此群体重点推广。

那么大家有没有发现关于这一条数据的分析有什么问题?

我们的训练营报名用户工作年限是1-3年居多,这是一个结果,我们只针对这个结果进行了分析。那么按照贝叶斯定律,很明显我们忽略了导致这个结果的前提条件:我们的投放渠道覆盖的用户工作年限的分布,这个前提条件的忽略最终可能影响了我们对整件事情的判断。

2. 分析的修正

如果活动投放渠道所覆盖的用户就是1-3年工作经验居多,自然报名训练营的用户也会是这个群体居多,那我们的数据复盘关于这一条的分析就是错误的,并不能说明我们的课程对工作1-3年的开发者更具有吸引力。如果我们的投放渠道用户分布平均,而活动报名用户出现了如上的分布,那我们的复盘总结便是有意义的。

在意识到以上因素后,我们对这一期活动投放渠道的引流数据做了回顾:

很明显,能发现本次活动自有流量池引流效果最为显著,报名人数占总人数的65%,而有趣的是,根据我们先前统计,我们的自有流量用户工作年限画像,1-3年工作经验的用户占比也是最多的,占整个自有流量池用户的半数以上。

因此,在回溯投放渠道这一数据之后,我们发现最初的活动复盘中的分析并站不住脚。

以上便是贝叶斯定律在运营中应用的一个小例子的分享,如果大家关注到这一点便会发现在运营的角角落落里都有贝叶斯理论的身影,一不小心我们就可能陷入贝叶斯陷阱而不自知,导致对数据或者整个运营活动的分析出现偏差,进而影响整个运营策略的制定和调整。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,406评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,732评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,711评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,380评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,432评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,301评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,145评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,008评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,443评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,649评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,795评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,501评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,119评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,731评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,865评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,899评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,724评论 2 354