Spark任务输出文件过程详解

https://blog.csdn.net/u013332124/article/details/92001346

一、Spark任务输出文件的总过程

当一个Job开始执行后,输出文件的相关过程大概如下:

1、Job启动时创建一个目录: ${output.dir}/_temporary/${appAttemptId} 作为本次运行的输出临时目录

2、当有task开始运行后,会创建 ${output.dir}/_temporary/${appAttemptId}/_temporary/${taskAttemptId}/${fileName} 文件,后面这个task的所有输出都会被写到这个文件中

3、当task运行完后,需要检查是否要commit,如果需要commit,会调用OutputCommitter#commitTask()方法。commit的细节后面说

4、等整个Job执行完就调用OutputCommitter#commitJob()方法。具体的过程也在下面介绍commit时说。

output.dir表示用户指定的输出目录,appAttemptId表示任务的attemptId,一般从1开始一直递增。taskAttemptId表示task的attemptId,比如taskId是0,第一次运行,这个id就是0.0。
OutputCommitter 只是一个抽象类,spark运行时会从配置中获取指定的实现类,如果配置中没指定,spark默认会使用 org.apache.hadoop.mapred.FileOutputCommitter 的实现。

二、Commit细节分析

1、commitTask 介绍

1.1、判断是否需要commit

当task执行完后,会去检查以下状态,如果下面的条件达成,就不会执行commit

  • ${output.dir}/_temporary/${appAttemptId}/_temporary/${taskAttempt} 目录不存在 (说明这个task的临时输出目录不存在,明显是有问题的)
  • 如果开启了Output commit coordination,就需要通过rpc询问Driver是否可以commit (根据spark.hadoop.outputCommitCoordination.enabled参数,默认为true.如果开启了推测执行,这个一定要设置为true)
  • Driver的CommitCoordinator判断task运行失败 (task运行失败就没必要commit了)
  • Driver的CommitCoordinator判断该task的其他attempt已经commit过了 (如果commit的taskAttemptId和当前一样,那么可以再次commit,说明task commit是一个幂等的操作)

1.2、task的commit细节

因为我们大部分情况下用的都是FileOutputCommitter,所以下面主要介绍一下这个类的commitTask实现。

FileOutputCommitter的实际commitTask细节和参数 mapreduce.fileoutputcommitter.algorithm.version 有关(默认值是1)。

mapreduce.fileoutputcommitter.algorithm.version=1时:

commit的操作是将 ${output.dir}/_temporary/${appAttemptId}/_temporary/${taskAttemptId} 重命名为 ${output.dir}/_temporary/${appAttemptId}/${taskId}

mapreduce.fileoutputcommitter.algorithm.version=2时:

commit的操作是将 ${output.dir}/_temporary/${appAttemptId}/_temporary/${taskAttemptId} 下的文件移动到 ${output.dir} 目录下 (也就是最终的输出目录)

spark任务可以通过设置spark配置 spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version=2来开启版本2的commit逻辑
在hadoop 2.7.0之前,FileOutputCommitter的实现没有区分版本,统一都是使用version=1的commit逻辑。因此如果spark的hadoop依赖包版本如果低于2.7.0,设置mapreduce.fileoutputcommitter.algorithm.version=2是没有用的

2、commitJob 介绍

Job执行完后,会调用commitJob方法,我们还是看一下FileOutputCommitter的实现:

commitJob的细节也和mapreduce.fileoutputcommitter.algorithm.version 参数有关(默认值是1)

mapreduce.fileoutputcommitter.algorithm.version=1时:

由 Driver 单线程遍历所有 committedTaskPath,也就是${output.dir}/_temporary/${appAttemptId} 下的所有文件,然后移动到 ${output.dir} 目录下。然后创建_SUCCESS表示任务结束

mapreduce.fileoutputcommitter.algorithm.version=2时:

只需要创建_SUCCESS文件,因为输出文件在task执行完后就已经移动到输出目录了

在commitJob完后,spark还会执行cleanupJob将${output.dir}/_temporary 目录删除

三、V1和V2 commiter版本比较

mapreduce.fileoutputcommitter.algorithm.version 参数对文件输出有很大的影响,下面总结一下两种版本在各方面的优缺点。

1、性能方面

v1在task结束后只是将输出文件拷到临时目录,然后在job结束后才由Driver把这些文件再拷到输出目录。如果文件数量很多,Driver就需要不断的和NameNode做交互,而且这个过程是单线程的,因此势必会增加耗时。如果我们碰到有spark任务所有task结束了但是任务还没结束,很可能就是Driver还在不断的拷文件。

v2在task结束后立马将输出文件拷贝到输出目录,后面Job结束后Driver就不用再去拷贝了。

因此,在性能方面,v2完胜v1。

2、数据一致性方面

v1在Job结束后才批量拷文件,其实就是两阶段提交,它可以保证数据要么全部展示给用户,要么都没展示(当然,在拷贝过程中也无法保证完全的数据一致性,但是这个时间一般来说不会太长)。如果任务失败,也可以直接删了_temporary目录,可以较好的保证数据一致性。

v2在task结束后就拷文件,就会造成spark任务还未完成就让用户看到一部分输出,这样就完全没办法保证数据一致性了。另外,如果任务在输出过程中失败,就会有一部分数据成功输出,一部分没输出的情况。

因此在数据一致性方面,v1完胜v2

3、总结

很明显,如果我们执着于性能,不在乎数据输出时的一致性,完全可以将mapreduce.fileoutputcommitter.algorithm.version设置为2来提高性能。

但是如果我们对输出要求很高的数据一致性,那么最好不要为了性能将mapreduce.fileoutputcommitter.algorithm.version设置为2。

参考资料

https://issues.apache.org/jira/browse/MAPREDUCE-4815

https://zhuanlan.zhihu.com/p/45351972

https://mp.weixin.qq.com/s?__biz=MzU3NTE2NzAxNQ==&mid=2247484099&idx=1&sn=0a0a3a1f407d30a22dcfbd85fab488e6&chksm=fd260d8bca51849d94e8df9f2249462d5a5dfc8079c45b4d9ab489aaea77c0ce14108a948f94&token=2064668791&lang=zh_CN#rd

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,744评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,505评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,105评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,242评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,269评论 6 389
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,215评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,096评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,939评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,354评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,573评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,745评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,448评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,048评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,683评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,838评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,776评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,652评论 2 354

推荐阅读更多精彩内容