ES 6 函数尾调用

尾调用优化
什么是尾调用?

尾调用(Tail Call)是函数式编程的一个重要概念,本身非常简单,一句话就能说清楚,就是指某个函数的最后一步是调用另一个函数。

function f(x){
  return g(x);
}

上面代码中,函数f的最后一步是调用函数g,这就叫尾调用。

以下三种情况,都不属于尾调用。

// 情况一
function f(x){
  let y = g(x);
  return y;
}

// 情况二
function f(x){
  return g(x) + 1;
}

// 情况三
function f(x){
  g(x);
}

上面代码中,情况一是调用函数g之后,还有赋值操作,所以不属于尾调用,即使语义完全一样。情况二也属于调用后还有操作,即使写在一行内。情况三等同于下面的代码。

function f(x){
  g(x);
  return undefined;
}

尾调用不一定出现在函数尾部,只要是最后一步操作即可。

function f(x) {
  if (x > 0) {
    return m(x)
  }
  return n(x);
}

上面代码中,函数mn都属于尾调用,因为它们都是函数f的最后一步操作。
尾调用之所以与其他调用不同,就在于它的特殊的调用位置。

我们知道,函数调用会在内存形成一个“调用记录”,又称“调用帧”(call frame),保存调用位置和内部变量等信息。如果在函数A的内部调用函数B,那么在A的调用帧上方,还会形成一个B的调用帧。等到B运行结束,将结果返回到AB的调用帧才会消失。如果函数B内部还调用函数C,那就还有一个C的调用帧,以此类推。所有的调用帧,就形成一个“调用栈”(call stack)。

尾调用由于是函数的最后一步操作,所以不需要保留外层函数的调用帧,因为调用位置、内部变量等信息都不会再用到了,只要直接用内层函数的调用帧,取代外层函数的调用帧就可以了。

function f() {
  let m = 1;
  let n = 2;
  return g(m + n);
}
f();

// 等同于
function f() {
  return g(3);
}
f();

// 等同于
g(3);

上面代码中,如果函数g不是尾调用,函数f就需要保存内部变量mn的值、g的调用位置等信息。但由于调用g之后,函数f就结束了,所以执行到最后一步,完全可以删除f(x)的调用帧,只保留g(3)的调用帧。

这就叫做“尾调用优化”(Tail call optimization),即只保留内层函数的调用帧。如果所有函数都是尾调用,那么完全可以做到每次执行时,调用帧只有一项,这将大大节省内存。这就是“尾调用优化”的意义。

注意,只有不再用到外层函数的内部变量,内层函数的调用帧才会取代外层函数的调用帧,否则就无法进行“尾调用优化”。

function addOne(a){
  var one = 1;
  function inner(b){
    return b + one;
  }
  return inner(a);
}

上面的函数不会进行尾调用优化,因为内层函数inner用到了外层函数addOne的内部变量one

尾递归

函数调用自身,称为递归。如果尾调用自身,就称为尾递归

递归非常耗费内存,因为需要同时保存成千上百个调用帧,很容易发生“栈溢出”错误(stack overflow)。但对于尾递归来说,由于只存在一个调用帧,所以永远不会发生“栈溢出”错误。

function factorial(n) {
  if (n === 1) return 1;
  return n * factorial(n - 1);
}

factorial(5) // 120

上面代码是一个阶乘函数,计算n的阶乘,最多需要保存n个调用记录,复杂度O(n)

如果改写成尾递归,只保留一个调用记录,复杂度O(1)

function factorial(n, total) {
  if (n === 1) return total;
  return factorial(n - 1, n * total);
}

factorial(5, 1) // 120

还有一个比较著名的例子,就是计算 Fibonacci 数列,也能充分说明尾递归优化的重要性。

非尾递归的 Fibonacci 数列实现如下。

function Fibonacci (n) {
  if ( n <= 1 ) {return 1};

  return Fibonacci(n - 1) + Fibonacci(n - 2);
}

Fibonacci(10) // 89
Fibonacci(100) // 堆栈溢出
Fibonacci(500) // 堆栈溢出

尾递归优化过的 Fibonacci 数列实现如下。

function Fibonacci2 (n , ac1 = 1 , ac2 = 1) {
  if( n <= 1 ) {return ac2};

  return Fibonacci2 (n - 1, ac2, ac1 + ac2);
}

Fibonacci2(100) // 573147844013817200000
Fibonacci2(1000) // 7.0330367711422765e+208
Fibonacci2(10000) // Infinity

由此可见,“尾调用优化”对递归操作意义重大,所以一些函数式编程语言将其写入了语言规格。ES6 是如此,第一次明确规定,所有 ECMAScript 的实现,都必须部署“尾调用优化”。这就是说,ES6 中只要使用尾递归,就不会发生栈溢出,相对节省内存。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 函数参数的默认值 基本用法 在ES6之前,不能直接为函数的参数指定默认值,只能采用变通的方法。 上面代码检查函数l...
    陈老板_阅读 3,280评论 0 1
  • 函数参数的默认值 基本用法 在ES6之前,不能直接为函数的参数指定默认值,只能采用变通的方法。 上面代码检查函数l...
    呼呼哥阅读 8,940评论 0 1
  • 1.函数参数的默认值 (1).基本用法 在ES6之前,不能直接为函数的参数指定默认值,只能采用变通的方法。
    赵然228阅读 4,048评论 0 0
  • 什么是尾调用? 尾调用(Tail Call)是函数式编程的一个重要概念,本身非常简单,一句话就能说清楚,就是指某个...
    alex夏夜阅读 5,798评论 0 3
  • 姓名:徐芳芳 公司:南京凯弘进出口贸易有限公司 349期努力二组【日精进打卡第12天】 【知~学习】 《六项精进》...
    徐芳芳_4548阅读 1,481评论 0 0

友情链接更多精彩内容