1.2 行化简和阶梯形矩阵(线性代数及其应用-第5版-系列笔记)

内容概述

本节首先讲解了矩阵变换的两种形式:阶梯形简化阶梯形,并讲述了这两种变换之间的关系(最重要的关系是二者的主元位置和主元列是相同的)。之所以引入这两种变换,是为了给解线性方程组和研究线性方程组解的性质提供方便。接下来,讲解了利用简化阶梯形求解线性方程组解的方法,最后讨论了利用阶梯形矩阵判断方程组解的存在性唯一性的方法,并得出了解线性方程组的一般步骤

术语约定

非零行:
矩阵中至少包含一个非零元素的行
非零列:
矩阵中至少包含一个非零元素的列
先导元素:
非零行中最左边的非零元素

阶梯形矩阵的定义

一个矩阵称为阶梯形(或行阶梯形),若它有以下三个性质:

  1. 每一非零行都在每一零行之上
  2. 某一行的先导元素所在的列位于前一行先导元素的右边
  3. 某一先导元素所在列下方元素都是零

若一个阶梯形矩阵还满足以下性质,则称它为简化阶梯形(或简化行阶梯形):

  1. 每一非零行的先导元素是1
  2. 每一先导元素1是该元素所在列的唯一非零元素

下面是阶梯形矩阵的例子,先导元素用\triangle表示,*表示任意元素。
\begin{bmatrix} \triangle & * & * & * \\ 0 & \triangle & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}

\begin{bmatrix} 0 & \triangle & * & * & * & * & * & * & * & * \\ 0 & 0 & 0 & \triangle & * & * & * & * & * & * \\ 0 & 0 & 0 & 0 & \triangle & * & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & \triangle & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \triangle & * \end{bmatrix}

下面是一个简化阶梯形矩阵的例子:
\begin{bmatrix} 1 & 0 & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}

\begin{bmatrix} 0 & 1 & * & 0 & 0 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 1 & 0 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 1 & 0 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 1 & * & * & 0 & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & * \end{bmatrix}

任何非零矩阵都可以行化简(即用初等行变换)为阶梯形矩阵。若矩阵A行等价于阶梯形矩阵U,则称UA的阶梯形;若U是简化阶梯形,则称UA的简化阶梯形。

主元位置

需要注意:阶梯形矩阵化简为简化阶梯形时,先导元素的位置并不改变。因简化阶梯形是唯一的,故当给定矩阵化为任何一个阶梯形时,先导元素总是在相同的位置上。

定义:
矩阵中的主元位置A中对应于它的简化阶梯形中先导元素1的位置。主元列A的含有主元位置的列。

下面的例子说明了可以通过把一个矩阵变换为阶梯形矩阵来求取主元位置:
有如下矩阵:
\begin{bmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \\ \end{bmatrix}
经过行化简后,可以变换为如下形式:
\begin{bmatrix} 1 & 4 & 5 & -9 & 7 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 0 & 0 & -5 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix}
这个矩阵符合如下一般形式:
\begin{bmatrix} \triangle & * & * & * & * \\ 0 & \triangle & * & * & * \\ 0 & 0 & 0 & \triangle & * \\ 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix}
由上述对主元位置主元列的定义,可知,该矩阵的主元分别是12-5,主元列分别是第一、二、四列。

下面的例子说明了求取简化阶梯形的两个步骤,第一个步骤先将矩阵变换为阶梯形矩阵,第二个步骤再将阶梯形矩阵化简为简化阶梯形矩阵
有如下矩阵:
\begin{bmatrix} 1 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix}
通过一系列的初等行变换(这一步骤称为行化简算法的向前步骤),可以得到其阶梯形矩阵:
\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}
接下来,为了得到简化阶梯形,需要将主元通过变换变为1,并且,通过将这一行乘以适当的倍数,加到其余的行,来使得该主元列其他的元素都变为0。这一步骤称为行化简的向后步骤
经过这一步骤后,可以得到该矩阵的简化阶梯形:
\begin{bmatrix} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}

本节讲述的阶梯形简化阶梯形可以为下一节所述的解线性方程组提供方便。

线性方程组的解

行化简算法应用于方程组的增广矩阵时,可以得出线性方程组解集的一种显式表示法。
例如,设某个线性方程组的增广矩阵已经化为等价的简化阶梯形:
\begin{bmatrix} 1 & 0 & -5 & 1 \\ 0 & 1 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}
对应的线性方程组为:
\begin{aligned} x_1 \quad - 5x_3 = 1 \\ x_2 + x_3 = 4 \\ 0 = 0 \end{aligned}
对应于主元列的变量x_1x_2称为基本变量,其他变量称为自由变量
由于简化阶梯形使每个基本变量仅包含在一个方程中(由于每一先导元素1是该元素所在列的唯一非零元素,所以除了该先导元素所在的行,其他行对应列的位置的元素都是零了),因此可以在每一个方程中用自由变量表示基本变量,便可以得到方程组的解。
上述方程组的通解为:
\begin{cases} x_1 = 1 + 5x_3 \\ x_2 = 4 - x_3\\ \end{cases}
另外x_3是自由变量。所谓的自由变量,是指它可取任意的值。x_3的不同选择确定了方程组的不同的解,方程组的每个解由x_3的值的选择来确定。

解集的参数表示

形如上述方程组的表示式称为解集的参数表示,其中自由变量作为参数。解方程组就是要求出解集的这种参数表示或确定它无解。
需要注意,在上述方程组中,把x_3作为自由变量只是一种约定,其实它们之间中的任何一个都可以作为所谓的自由变量,来表示两外两个未知数。

存在性与唯一性问题

确定下列方程组的解是否存在且唯一:
\begin{aligned} 3x_2 - 6x_3 + 6x_4 + 4x_5 = -5 \\ 3x_1 - 7x_2 + 8x_3 - 5x_4 + 8x_5 = 9 \\ 3x_1 - 9x_2 + 12x_3 -9x_4 + 6x_5 = 15 \end{aligned}
由上述阶梯形简化阶梯形之间的关系(阶梯形矩阵化简为简化阶梯形时,先导元素的位置并不改变。),判断线性方程组解的存在性唯一性问题,只需要将矩阵变换为阶梯形就可以了。
例如,将上述方程组化简为如下阶梯形:
\begin{bmatrix} 3 & -9 & 12 & -9 & 6 & 15 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}
可以判断出,基本变量是x_1x_2x_5,自由变量是x_3x_4。这里没有类似0=1等明显不成立的方程,所以该方程是有解的。同时,解不是唯一的,因为有自由变量的存在。
由此引出了下面的定理:

线性方程组相容的充要条件是增广矩阵的最右列不是主元列。也就是说,增广矩阵的阶梯形没有形如[0 \cdots, 0, b], b\neq0的行。若线性方程组相容,则它的解集可能有两种情形:1. 当没有自由变量时,有唯一解; 2. 若至少有一个自由变量,则有无穷多解。

利用行化简法解线性方程组的一般步骤

通过上面的讨论,也可以总结出解线性方程组的一般步骤:

  1. 写出方程组的增广矩阵
  2. 应用行化简算法把增广矩阵化为阶梯形,确定方程组是否相容。如果没有解则停止;否则进行下一步。
  3. 继续行化简算法得到它的简化阶梯形。
  4. 写出由第3步所得矩阵对应的方程组。
  5. 把第4步所得的每个非零方程改写为用任意自由变量表示其基本变量的形式。

例题:假设一个方程组的4 \times 7系数矩阵有4个主元,这个方程组是相容的吗?如果它是相容的,有多少解?

解:由于系数矩阵有4个主元,因此系数矩阵的每行有一个主元。这意味着系数矩阵是行简化的,它没有0行,因此相应的行简化增广矩阵没有形如[0 \cdots, 0, b]的行,其中b是一个非零数。由本文所述定理知,方程组是相容的。此外,因为系数矩阵有7列且仅有4个主元列,所以将有3个自由变量构成无穷多解。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,367评论 6 512
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,959评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,750评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,226评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,252评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,975评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,592评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,497评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,027评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,147评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,274评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,953评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,623评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,143评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,260评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,607评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,271评论 2 358