数据结构与算法:数组与链表

数组

一、数组(Array)

是一种线性表数据结构。它用一组连续的内存空间,来存储一组具有相同类型的数据,最大的特点就是支持随机访问,但插入、删除操作也因此变得比较低效,平均情况时间复杂度为 O(n)

  • 第一是线性表(Linear List)。顾名思义,线性表就是数据排成像一条线一样的结构。每个线性表上的数据最多只有前和后两个方向。其实除了数组,链表、队列、栈等也是线性表结构。
  • 第二个是连续的内存空间和相同类型的数据。正是因为这两个限制,它才有了一个堪称“杀手锏”的特性:“随机访问”。但有利就有弊,这两个限制也让数组的很多操作变得非常低效,比如要想在数组中删除、插入一个数据,为了保证连续性,就需要做大量的数据搬移工作。

二、随机访问数组中的某个元素

我们知道,计算机会给每个内存单元分配一个地址,计算机通过地址来访问内存中的数据。当计算机需要随机访问数组中的某个元素时,它会首先通过下面的寻址公式,计算出该元素存储的内存地址:

a[i]_address = base_address + i * data_type_size

三、插入操作和删除操作

假设数组的长度为 n,现在,如果我们需要将一个数据插入到数组中的第 k 个位置。为了把第 k 个位置腾出来,给新来的数据,我们需要将第 k~n 这部分的元素都顺序地往后挪一位。平均情况时间复杂度为 O(n)

四、插入优化:

如果数组中存储的数据并没有任何规律,数组只是被当作一个存储数据的集合。在这种情况下,如果要将某个数据插入到第 k 个位置,为了避免大规模的数据搬移,我们还有一个简单的办法就是,直接将第 k 位的数据搬移到数组元素的最后,把新的元素直接放入第 k 个位置。

五、删除优化:

可以先记录下已经删除的数据。每次的删除操作并不是真正地搬移数据,只是记录数据已经被删除。当数组没有更多空间存储数据时,我们再触发执行一次真正的删除操作,这样就大大减少了删除操作导致的数据搬移。

六、动态扩容

数组本身在定义的时候需要预先指定大小,因为需要分配连续的内存空间。如果我们申请了大小为 10 的数组,当第 11 个数据需要存储到数组中时,我们就需要重新分配一块更大的空间,将原来的数据复制过去,然后再将新的数据插入。

链表

一、什么是链表?

1.和数组一样,链表也是一种线性表。
2.从内存结构来看,链表的内存结构是不连续的内存空间,是将一组零散的内存块串联起来,从而进行数据存储的数据结构。
3.链表中的每一个内存块被称为节点Node。节点除了存储数据外,还需记录链上下一个节点的地址,即后继指针next。

二、为什么使用链表?即链表的特点

1.插入、删除数据效率高O(1)级别(只需更改指针指向即可),随机访问效率低O(n)级别(需要从链头至链尾进行遍历)。
2.和数组相比,内存空间消耗更大,因为每个存储数据的节点都需要额外的空间存储后继指针。

3.双向链表

  • 节点除了存储数据外,还有两个指针分别指向前一个节点地址(前驱指针prev)和下一个节点地址(后继指针next)。
  • 首节点的前驱指针prev和尾节点的后继指针均指向空地址。
  • 性能特点:
    • 和单链表相比,存储相同的数据,需要消耗更多的存储空间。
    • 插入、删除操作比单链表效率更高O(1)级别。
      以删除操作为例,删除操作分为2种情况:
      1、给定数据值删除对应节点,单链表和双向链表都需要从头到尾进行遍历从而找到对应节点进行删除,时间复杂度为O(n)。
      2、给定节点地址删除节点,要进行删除操作必须找到前驱节点,单链表需要从头到尾进行遍历直到p->next = q,时间复杂度为O(n),而双向链表可以直接找到前驱节点,时间复杂度为O(1)。
      • 对于一个有序链表,双向链表的按值查询效率要比单链表高一些。因为我们可以记录上次查找的位置p,每一次查询时,根据要查找的值与p的大小

三、如何分别用链表和数组实现LRU缓冲淘汰策略(最近最少使用策略LRU)(Least Recently Used)?

链表实现LRU缓存淘汰策略

当访问的数据没有存储在缓存的链表中时,直接将数据插入链表尾部,时间复杂度为O(1);当访问的数据存在于存储的链表中时,将该数据对应的节点,插入到链表尾部,时间复杂度为O(n)。如果缓存被占满,则从链表头部的数据开始清理,时间复杂度为O(1)。

使用散列表和链表实现LRU缓存淘汰算法?

①使用双向链表存储数据,链表中每个节点存储数据(data)、前驱指针(prev)、后继指针(next)之外,还新增了一个特殊的字段 hnext。
②散列表通过链表法解决散列冲突,所以每个节点都会在两条链中。一条链是双向链表,另一条链是散列表中的拉链。前驱和后继指针是为了将节点串在双向链表中,hnext指针是为了将节点串在散列表的拉链中。
③LRU缓存淘汰算法的3个主要操作如何做到时间复杂度为O(1)呢?
首先,我们明确一点就是链表本身插入和删除一个节点的时间复杂度为O(1),因为只需更改几个指针指向即可。
接着,来分析查找操作的时间复杂度。当要查找一个数据时,通过散列表可实现在O(1)时间复杂度找到该数据,再加上前面说的插入或删除的时间复杂度是O(1),所以我们总操作的时间复杂度就是O(1)。

数组实现LRU缓存淘汰策略

首位置优先清理,末尾位置保存最新访问数据
当访问的数据未存在于缓存的数组中时,直接将数据添加进数组作为当前最后一个元素时间复杂度为O(1);当访问的数据存在于缓存的数组中时,查找到数据并将其插入当前数组最后一个元素的位置,此时亦需移动数组元素,时间复杂度为O(n)。缓存用满时,则清理掉数组首位置的元素,且剩余数组元素需整体前移一位,时间复杂度为O(n)。(优化:清理的时候可以考虑一次性清理一定数量,从而降低清理次数,提高性能。)

总结:选择数组还是链表?

1、数组和链表的区别:

链表适合插入、删除,时间复杂度 O(1)
数组支持随机访问,根据下标随机访问的时间复杂度为 O(1)

2.插入、删除和随机访问的时间复杂度

数组:插入、删除的时间复杂度是O(n),随机访问的时间复杂度是O(1)。
链表:插入、删除的时间复杂度是O(1),随机访问的时间复杂端是O(n)。

3.数组缺点

1)若申请内存空间很大,比如100M,但若内存空间没有100M的连续空间时,则会申请失败,尽管内存可用空间超过100M。
2)大小固定,若存储空间不足,需进行扩容,一旦扩容就要进行数据复制,而这时非常费时的。

4.链表缺点

1)内存空间消耗更大,因为需要额外的空间存储指针信息。
2)对链表进行频繁的插入和删除操作,会导致频繁的内存申请和释放,容易造成内存碎片,如果是Java语言,还可能会造成频繁的GC(自动垃圾回收器)操作。

5.如何选择?

数组简单易用,在实现上使用连续的内存空间,可以借助CPU的缓冲机制预读数组中的数据,所以访问效率更高,而链表在内存中并不是连续存储,所以对CPU缓存不友好,没办法预读。
如果代码对内存的使用非常苛刻,那数组就更适合。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,539评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,911评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,337评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,723评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,795评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,762评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,742评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,508评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,954评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,247评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,404评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,104评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,736评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,352评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,557评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,371评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,292评论 2 352