证明实对称矩阵合同的充要条件是他们有相同的正负惯性指数

充分性:

设X,Y是两个实对称矩阵,设他们有相同的惯性指数,则X、Y有相同的规范式A,即存在可逆矩阵C、P使得C'XC=A、P'YP=A即(P^-1)'C'XC(P^-1)=[C(P^-1)]'X[(p^-1)C]=Y,所以X、Y合同.

必要性:

设X,Y是两个合同的实对称矩阵,即C'XC=Y;有Y与其规范式A合同,即P'YP=A.

所以P'(C'XC)P=A,即(CP)'X(CP)=A,此即表示X也合同于规范式A.所以X、Y有相同的规范式,即有相同的正负惯性指数.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。