functools 模块提供用于调整或扩展函数和其他可调用对象的工具,而无需完全重写它们。
装饰器
partial 类是 functools 模块提供的主要工具, 它可以用来“包装”一个可调用的对象的默认参数。它产生的对象本身是可调用的,可以看作是原生函数。它所有的参数都与原来的相同,并且可以使用额外的位置参数或命名参数来调用。使用 partial 代替 lambda 来为函数提供默认参数,同时保留那些未指定的参数。
本文福利:私信回复【PDF】可获取Python电子书一套
Partial 对象
下面列子是对 myfunc 方法的两个 partial 对象,show_details() 用于输出partial对象的 func 、 args 和 keywords 属性:
示例中最后调用第一个 partial 对象而没有传递 a 的值,导致异常。
获取函数属性
默认情况下, partial 对象没有 __name__ 和 __doc__ 属性。 这样不利于被装饰的函数进行调试。可以使用 update_wrapper() 从原函数复制或新增属性到 partial 对象。
添加到装饰器的属性在 WRAPPER_ASSIGNMENTS 中定义,而 WRAPPER_UPDATES 列出要修改的值。
其他调用对象
partial适用于所有可调用可对象,并不是仅可用于独立函数。
上面例子使用 MyClass 类的实例的 __call__() 方法创建了partial对象。照样正常工作:
方法和函数
partial() 返回一个可以直接调用的对象, partialmethod() 返回一个可调用的为某个对象准备的未绑定的方法。再下面例子中,同一个独立函数被两次添加到类 MyClass 属性。使用 partialmethod() 生成 method1(), partial() 生成 method2():
method1() 可以被 MyClass 实例调用,和普通类方法一样,实例作为第一个参数传入。method2() 没有被成功绑定为类方法。因此其 self 参数必须显式传入,所以此例抛出 TypeError 异常:
在装饰器中使用
使用装饰器时保持函数的属性信息有时非常有用。但是使用装饰器时难免会损失一些原本的功能信息。所以functools提供了 wraps() 装饰器可以通过 update_wrapper() 将原函数对象的指定属性复制给包装函数对象。
比较
在Python2之前,类中可以定义 __cmp__() 方法,该方法根据对象是否小于、d等于或大于被比较项返回-1、0或1。Python2.1开始引入了 富比较 方法API(__lt__(), __le()__, __eq__(), __ne__(), __gt__() 和 __ge__()),用于执行比较操作返回一个布尔值。Python3中 __cmp__() 放弃支持这些新方法,由 functools 提供工具,以便于编写符合Python3中新的比较需求的类。
富比较
富比较API旨在允许具有复杂比较的类以最有效的方式实现每种计算。但是,对于比较相对简单的类,手动创建每种富比较方法没有意义。total_ordering() 类装饰器可以使被装饰的类只需要定义 __lt__(),__le__().__gt__()和__ge__() 中的其中一个和 __eq__(), 剩下的由该装饰器自动提供。这简化了定义所有富比较操作的工作量。
虽然该装饰器能很容易的创建完全有序类型,但衍生出的比较函数执行的可能会更慢,以及产生更复杂的堆栈跟踪。如果性能基准测试表明这是程序的瓶颈,则实现所有六个富比较函数可能会提高速度。
排序规则
在Python3中已经废弃了旧时的比较(cmp)函数,因此例如 sorted(),min(),max()等方法不在支持 cmp参数, 但仍然支持key函数。functools提供了 cmp_to_key() 用于将cmp函数转换成key函数。
例如给定一个正整数列表,输出用这些正整数能够拼接成的最大整数。如果是Python2的程序可以是这样:
但Python3的 sort 函数已废弃 cmp 参数,可以使用 cmp_to_key 将cmp函数转换成key函数:
cmp 函数接收两个参数,比较它们,如果小于返回负数,相等返回0,大于返回正数。 key 函数接收一个参数,返回用于排序的键。
缓存
lru_cache() 装饰器是 缓存淘汰算法(最近最少使用)的一种实现。其使用函数的参数作为key结果作为value缓存在hash结构中(因此函数的参数必须是hashable),如果后续使用相同参数再次调用将从hash从返回结果。同时装饰器还添加了检查缓存转态方法(cache_info())和清空缓存方法(cache_clear())给函数。
代码中多次调用 demo() 方法。首次调用后结果存在缓存中。cache_info() 返回一个命名元组,包括 hits,misses,maxsize 和 currsize 。当第二次调用时命中缓存的调用将直接返回缓存内容,cache_clear() 用于清空当前缓存。
为了防止缓存在长时间运行的流程中无限制地增长,特别设置了 maxsize 参数, 默认是128,设置为None时,则禁用LRU功能,缓存可以无限增长。同时还提供了 typed 参数,用于设置是否区别参数类型,默认为Fals。如果设置为True,那么类似如 demo(1) 和 demo(1.0) 将被视为不同的值不同的调用。
Reduce方法
Python3中取消了全局命名空间中的 reduce() 函数,将 reduced() 放到了 functools 模块中,要使用 reduce() 的话,要先从 functools 中加载。
函数重载
在动态类型的语言(如Python)中,如果需要根据参数的类型执行不同的操作,简单直接的方法就是检查参数的类型。但在行为差异明显的情况下需要分离成单独的函数。 functools 提供 singledispatch() 装饰器注册一组通用函数基于函数的第一个参数的类型自动切换,类似于强类型语言中的函数重载。
被 singledispatch() 装饰的函数是默认实现, 使用其 register() 属性装饰接收其他类型参数的函数。调用时会根据 register() 中注册的类型自动选择实现函数。没有则使用默认实现。
另外再有继承的情况下,当类型没有精确匹配时,将根据继承顺序,选择最接近的类型。
在上面代码中,类D和E没有与任何已注册的泛型函数匹配,所以根据其类的继承顺序进行选择。