TensorFlow从0到1 - 13 - AI驯兽师:神经网络调教综述

TensorFlow从0到1系列回顾

在未来的AI时代,“手工程序”将变得越发稀有,而基于通用AI程序,通过大数据“习得”而生的程序,会无所不在。到那时,程序员将光荣卸任,取而代之的是一个新职业物种:他们无需像程序员那样了解所有细节,而是关注数据的获取和筛选、模型的训练和调教。他们是AI驯兽师

在过去的两场人机围棋旷世之战中,替AlphaGo执棋的黄士杰就是AI驯兽师的先驱:一个业余六段棋手作为首席工程师打造出AlphaGo,完胜人类专业九段,至此再无人类对手。

AI驯兽师

前面MNIST识别的实现,选用的各种参数值看似天经地义,一帆风顺,实则都是前人的经验,而真实情况下的调教过程,必定充满了过去不曾留意过的种种困难和不确定性。还记得在12 TensorFlow构建3层NN玩转MNIST中,一个不小心令权重和偏置初始化为0,导致了识别率连60%都无法逾越的结果。

本篇先对神经网络的调教做一个总览,作为“驯兽”的简要指南。

调教的几个层面

神经网络可调的选项实在太多了,也并不简单,我简单把它梳理为5个层面。

第一个层面:网络架构

网络的架构是在训练之前就需要确定的,包括:

  • 输入层神经元数量;
  • 输出层神经元数量;
  • 隐藏层的数量,以及各隐藏层神经元的数量;
  • 隐藏层的种类:全连接层(FC),批标准化层(BN),卷积层(Convolutional),池化层(Pooling),Inception Module,Res Module;
  • 隐藏层神经元激活函数的形式:Sigmoid, Tanh,ReLU,Leaky ReLU,Swish;
  • 输出层神经元激活函数的形式:Sigmoid,Softmax;

理论上,网络架构的规模越大,对复杂模型的表达就越充分。可随之而来的副作用也相当明显:训练难度相应增大,同时容易发生过拟合。此外,由于基于梯度下降的神经网络算法自身的局限、计算量等一系列因素,当全连接网络的规模增加到一定程度时(尤其是深度规模),模型性能的提升会越发困难。

所以网络规模并不是越大越好,要根据问题的规模以及数据量的规模来综合考虑。

第二个层面:超参数

一旦网络架构定义完毕,那么除了网络自身的可训练参数之外,其余的参数都可以被认为是超参数,包括:

  • epoch,迭代数量;
  • mini batch;
  • learning rate,学习率;
  • lambda,正则化参数(如果损失函数进行了L1或L2正则化);
  • γ,β,批标准化参数(如果网络中包含BN层);
  • 卷积核数量、尺寸、步长Stride、Padding数量(如果包含卷积层);

第三个层面:权重和偏置初始化

开始学习之前,权重和偏置的数值分布状态,也会很大的影响到模型的精度,以及学习的速度。常见的初始化方式:

  • 初始化为0;
  • 初始化均值为0,标准差为1;
  • 初始化均值为0,标准差为1/√n;
  • Xavier/He初始化方法;

其中第一种初始化为0,就遇到了12 TensorFlow构建3层NN玩转MNIST提到的“60%识别率”的严重状况。

第二种是我们目前的已有MNIST识别实现所采用的初始化方法。相较于第二种方式,后两种会明显改善学习速度,后面的文章还会具体讲。

第四个层面:数据使用

用于模型学习的数据当然是越大越好,可现实中它总是稀缺而昂贵。在这种情况下就需要合理的划分和使用数据:

  • 训练数据的数量;
  • 验证数据的数量;
  • 测试数据的数量;
  • 数据的人为扩展;

训练集、验证集和测试集的划分方式我们已经了解了(参考11 74行Python实现手写体数字识别)。这里简单说下数据的扩展。

以图像数据为例。我们知道,只要把原图像整体挪动1个像素,就会得到一张全新的图像,由于图像的大部分像素的相对位置保持不变,所以其包含的语义信息仍然是完整无缺的。这样就可以在现有的数据基础上,人为产生更多的新数据。方法不限于平移,还可以做旋转、镜像、扭曲、添加噪音等等,以此来训练并提高模型的泛化能力。

第五个层面:最优化算法

即便是处于训练算法最外层的最优化算法框架,也可以被替换:

  • 损失函数的形式:均方误差(MSE),交叉熵(Cross Entrop),对数似然(Log Likelihood);
  • 最优化算法框架:随机梯度下降(SDG),Hessian,动量更新(Momentum),NAG( Nesterov Accelerated Gradient);
  • 自适应学习率算法:AdaGrad, RMSProp,Adam;
  • 基于全矩阵法的小批量数据(mini batch)反向传播;

调教目标和策略

调教神经网络的终极目标,狭义的说就是测试集上的识别精度。

尽管目标明确,但是整个训练过程只能间接的影响它——模型学习的数据是来自训练集,而测试集的识别精度要依靠模型的泛化能力来支撑。

提高模型泛化能力的切入点,并不是盲目的去尝试调整上面所有层面的选项,而通常是从着手改善问题开始的。未经优化的神经网络,通常都存在以下两个问题:

  • 学习缓慢;
  • 过拟合。

先从它们入手进行神经网络的优化,不失为一个好策略。

小结

本篇从整体上分析了神经网络调教的几个层面,以及调教的目标和策略。每当需要优化神经网络时,可以把它当做一份check list。

上一篇 12 TensorFlow构建3层NN玩转MNIST
下一篇 14 交叉熵损失函数——克服学习缓慢


共享协议:署名-非商业性使用-禁止演绎(CC BY-NC-ND 3.0 CN)
转载请注明:作者黑猿大叔(简书)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容