计算机视觉是指通过计算机和算法对图像和视频进行理解和分析的领域。它涉及图像处理、模式识别、机器学习和人工智能等技术,旨在使计算机能够模拟和解释人类视觉系统的功能。
以下是计算机视觉的主要任务和应用:
图像分类和识别:通过训练模型和算法,计算机可以对图像进行分类和识别,例如识别图像中的物体、场景或人脸等。这在许多领域中都有广泛的应用,如图像搜索、自动驾驶、安防监控等。
目标检测和跟踪:计算机可以检测和跟踪图像或视频中的特定目标或物体,例如在视频监控中检测运动物体或在自动驾驶中跟踪行人和车辆。
图像分割:图像分割是将图像分成不同的区域或对象的过程。它可以用于图像理解、医学图像分析、图像编辑等应用领域。
姿态估计:计算机可以通过分析图像或视频中的人体姿态来推断人体的姿势和动作。这对于虚拟现实、动作捕捉、人机交互等有重要意义。
三维重建:通过从多个视角的图像或视频中提取深度信息,计算机可以重建场景的三维模型。这在增强现实、虚拟现实、建筑设计等方面有广泛应用。
视频分析:计算机可以对视频进行分析,包括运动检测、行为识别、视频摘要等。这对于视频监控、视频内容管理和视频检索等有重要意义。
人脸识别:通过分析图像或视频中的人脸特征,计算机可以进行人脸识别,用于身份验证、安全监控、人脸表情分析等。
计算机视觉在许多领域中都有广泛的应用,如医学影像分析、无人机技术、工业自动化、农业图像处理等。随着深度学习和人工智能的发展,计算机视觉的性能和应用领域将继续扩大。
图像增广
图像增广(Image augmentation)是在计算机视觉和图像处理中常用的一种技术,通过对原始图像进行一系列变换和操作,生成多样化的训练样本。图像增广旨在扩充训练数据集,增加数据的多样性和数量,从而提高模型的泛化能力和鲁棒性。
以下是一些常用的图像增广技术:
镜像翻转(Horizontal/Vertical Flip):将图像水平或垂直翻转,生成镜像对称的图像,常用于物体检测和分类任务。
随机裁剪(Random Crop):在图像中随机选择一个区域进行裁剪,可以改变图像的大小和位置,增加数据的多样性。
旋转和缩放(Rotation and Scaling):对图像进行随机旋转和缩放操作,模拟不同角度和尺度的视角,提高模型对于旋转和缩放变化的鲁棒性。
平移和仿射变换(Translation and Affine Transformation):对图像进行平移、错切、拉伸等仿射变换操作,模拟不同的视角和形变情况。
噪声添加(Noise Injection):向图像中添加随机噪声,如高斯噪声、椒盐噪声等,增加模型对于噪声的鲁棒性。
色彩变换(Color Transformations):调整图像的色彩空间、亮度、对比度等属性,模拟不同的光照条件和色彩变化。
组合操作(Composite Operations):将多个增广操作组合起来,生成更加多样化的图像变换,如随机组合多个增广操作,生成更复杂的数据变化。
通过应用这些图像增广技术,可以有效地扩充训练数据集,减轻过拟合问题,并提高模型在真实世界中的性能。图像增广是深度学习和计算机视觉任务中的常用策略,可以提高模型的泛化能力和鲁棒性。
在对常用图像增广方法的探索时,使用我儿子leo作为示例。
d2l.set_figsize()
img = d2l.Image.open('./cat_leo.jpg')
d2l.plt.imshow(img)

大多数图像增广方法都具有一定的随机性。为了便于观察图像增广的效果,我们下面定义辅助函数apply。 此函数在输入图像img上多次运行图像增广方法aug并显示所有结果。
def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
Y = [aug(img) for _ in range(num_rows * num_cols)]
d2l.show_images(Y, num_rows, num_cols, scale=scale)
翻转和裁剪
左右翻转图像通常不会改变对象的类别。这是最早且最广泛使用的图像增广方法之一。 接下来,我们使用transforms模块来创建RandomFlipLeftRight实例,这样就各有50%的几率使图像向左或向右翻转。
apply(img, torchvision.transforms.RandomHorizontalFlip())

上下翻转图像不如左右图像翻转那样常用。但是,至少对于这个示例图像,上下翻转不会妨碍识别。接下来,我们创建一个RandomFlipTopBottom实例,使图像各有50%的几率向上或向下翻转。
apply(img, torchvision.transforms.RandomVerticalFlip())

下面的代码将随机裁剪一个面积为原始面积10%到100%的区域,该区域的宽高比从0.5~2之间随机取值。 然后,区域的宽度和高度都被缩放到200像素。 在本节中(除非另有说明),a和b之间的随机数指的是在区间[a,b]中通过均匀采样获得的连续值。
shape_aug = torchvision.transforms.RandomResizedCrop(
(200, 200), scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)

改变颜色
另一种增广方法是改变颜色。 我们可以改变图像颜色的四个方面:亮度、对比度、饱和度和色调。 在下面的示例中,我们随机更改图像的亮度,随机值为原始图像的50%(1-0.5)到150%(1+0.5)之间.
apply(img, gluon.data.vision.transforms.RandomBrightness(0.5))

同样,我们可以随机更改图像的色调。
apply(img, gluon.data.vision.transforms.RandomHue(0.5))

我们还可以创建一个RandomColorJitter实例,并设置如何同时随机更改图像的亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue)。
color_aug = gluon.data.vision.transforms.RandomColorJitter(
brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
apply(img, color_aug)

结合多种图像增广方法
在实践中,我们将结合多种图像增广方法。比如,我们可以通过使用一个Compose实例来综合上面定义的不同的图像增广方法,并将它们应用到每个图像。
augs = gluon.data.vision.transforms.Compose([
gluon.data.vision.transforms.RandomFlipLeftRight(), color_aug, shape_aug])
apply(img, augs)

小结
图像增广基于现有的训练数据生成随机图像,来提高模型的泛化能力。
为了在预测过程中得到确切的结果,我们通常对训练样本只进行图像增广,而在预测过程中不使用带随机操作的图像增广。
深度学习框架提供了许多不同的图像增广方法,这些方法可以被同时应用。
微调(Fine-tuning)
前面的一些章节介绍了如何在只有6万张图像的Fashion-MNIST训练数据集上训练模型。 我们还描述了学术界当下使用最广泛的大规模图像数据集ImageNet,它有超过1000万的图像和1000类的物体。 然而,我们平常接触到的数据集的规模通常在这两者之间。
假如我们想识别图片中不同类型的椅子,然后向用户推荐购买链接。 一种可能的方法是首先识别100把普通椅子,为每把椅子拍摄1000张不同角度的图像,然后在收集的图像数据集上训练一个分类模型。 尽管这个椅子数据集可能大于Fashion-MNIST数据集,但实例数量仍然不到ImageNet中的十分之一。 适合ImageNet的复杂模型可能会在这个椅子数据集上过拟合。 此外,由于训练样本数量有限,训练模型的准确性可能无法满足实际要求。
为了解决上述问题,一个显而易见的解决方案是收集更多的数据。 但是,收集和标记数据可能需要大量的时间和金钱。 例如,为了收集ImageNet数据集,研究人员花费了数百万美元的研究资金。 尽管目前的数据收集成本已大幅降低,但这一成本仍不能忽视。
另一种解决方案是应用迁移学习(transfer learning)将从源数据集学到的知识迁移到目标数据集。 例如,尽管ImageNet数据集中的大多数图像与椅子无关,但在此数据集上训练的模型可能会提取更通用的图像特征,这有助于识别边缘、纹理、形状和对象组合。 这些类似的特征也可能有效地识别椅子。
本节将介绍迁移学习中的常见技巧:微调(fine-tuning)。微调包括以下四个步骤。
1.在源数据集(例如ImageNet数据集)上预训练神经网络模型,即源模型。可以使用流行的深度学习框架(如PyTorch、TensorFlow)提供的预训练模型,或者使用其他开源模型库中的模型。常用的预训练模型包括在ImageNet数据集上训练的模型,如VGG、ResNet、Inception等。
创建一个新的神经网络模型,即目标模型。这将复制源模型上的所有模型设计及其参数(输出层除外)。我们假定这些模型参数包含从源数据集中学到的知识,这些知识也将适用于目标数据集。我们还假设源模型的输出层与源数据集的标签密切相关;因此不在目标模型中使用该层。
向目标模型添加输出层,其输出数是目标数据集中的类别数。然后随机初始化该层的模型参数。
在目标数据集(如椅子数据集)上训练目标模型。输出层将从头开始进行训练,而所有其他层的参数将根据源模型的参数进行微调。

热狗识别
让我们通过具体案例演示微调:热狗识别。 我们将在一个小型数据集上微调ResNet模型。该模型已在ImageNet数据集上进行了预训练。 这个小型数据集包含数千张包含热狗和不包含热狗的图像,我们将使用微调模型来识别图像中是否包含热狗。
在下面的代码中,目标模型finetune_net中成员变量features的参数被初始化为源模型相应层的模型参数。 由于模型参数是在ImageNet数据集上预训练的,并且足够好,因此通常只需要较小的学习率即可微调这些参数。
成员变量output的参数是随机初始化的,通常需要更高的学习率才能从头开始训练。 假设Trainer实例中的学习率为,我们将成员变量output中参数的学习率设置为
。
finetune_net = torchvision.models.resnet18(pretrained=True)
finetune_net.fc = nn.Linear(finetune_net.fc.in_features, 2)
nn.init.xavier_uniform_(finetune_net.fc.weight);
首先,我们定义了一个训练函数train_fine_tuning,该函数使用微调,因此可以多次调用。
# 如果param_group=True,输出层中的模型参数将使用十倍的学习率
def train_fine_tuning(net, learning_rate, batch_size=128, num_epochs=5,
param_group=True):
train_iter = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(
os.path.join(data_dir, 'train'), transform=train_augs),
batch_size=batch_size, shuffle=True)
test_iter = torch.utils.data.DataLoader(torchvision.datasets.ImageFolder(
os.path.join(data_dir, 'test'), transform=test_augs),
batch_size=batch_size)
devices = d2l.try_all_gpus()
loss = nn.CrossEntropyLoss(reduction="none")
if param_group:
params_1x = [param for name, param in net.named_parameters()
if name not in ["fc.weight", "fc.bias"]]
trainer = torch.optim.SGD([{'params': params_1x},
{'params': net.fc.parameters(),
'lr': learning_rate * 10}],
lr=learning_rate, weight_decay=0.001)
else:
trainer = torch.optim.SGD(net.parameters(), lr=learning_rate,
weight_decay=0.001)
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
devices)
我们使用较小的学习率,通过微调预训练获得的模型参数。
train_fine_tuning(finetune_net, 5e-5)

小结
迁移学习将从源数据集中学到的知识迁移到目标数据集,微调是迁移学习的常见技巧。
除输出层外,目标模型从源模型中复制所有模型设计及其参数,并根据目标数据集对这些参数进行微调。但是,目标模型的输出层需要从头开始训练。
通常,微调参数使用较小的学习率,而从头开始训练输出层可以使用更大的学习率。
锚框
锚框(Anchor Box)是在目标检测中使用的一种技术,用于识别图像中的物体位置和尺寸。目标检测任务的目标是在图像中准确地定位和分类多个物体。
在传统的目标检测方法中,通常需要预定义一些候选框(bounding box),然后将这些候选框与图像中的物体进行匹配。但是,由于物体的尺寸和长宽比可能各不相同,直接使用固定的候选框可能无法有效地捕捉到各种物体。
为了解决这个问题,锚框被引入到目标检测方法中。锚框是一组预定义的固定大小和长宽比的框,它们被均匀地分布在图像上的不同位置。这些锚框可以覆盖不同尺度和形状的物体。在目标检测的过程中,使用这些锚框作为候选框,通过与图像中实际物体的匹配来确定物体的位置和分类。
具体而言,锚框可以通过在图像上的不同位置生成多个候选框,每个锚框都与一定比例和尺寸的物体相匹配。通过在不同尺度和长宽比上生成一组锚框,可以有效地处理各种物体。
在训练过程中,使用与实际物体框有较高IoU(Intersection over Union)的锚框作为正样本,没有匹配的锚框被视为负样本。然后,通过监督学习的方式,通过分类器和回归器对正样本锚框进行分类和位置调整,从而实现对目标的检测和定位。
锚框技术的引入大大提高了目标检测的准确性和鲁棒性,成为了许多流行的目标检测算法(如Faster R-CNN、SSD、YOLO等)中的重要组成部分。它允许模型在不同尺度和长宽比的物体上进行有效的检测,适应各种复杂的场景。
生成多个锚框
假设输入图像的高度为,宽度为
。 我们以图像的每个像素为中心生成不同形状的锚框:缩放比为
,宽高比为
。 那么锚框的宽度和高度分别是
和
。 请注意,当中心位置给定时,已知宽和高的锚框是确定的。
要生成多个不同形状的锚框,让我们设置许多缩放比(scale)取值和许多宽高比(aspect ratio)取值
。 当使用这些比例和长宽比的所有组合以每个像素为中心时,输入图像将总共有
个锚框。 尽管这些锚框可能会覆盖所有真实边界框,但计算复杂性很容易过高。 在实践中,我们只考虑包含
或
的组合:
也就是说,以同一像素为中心的锚框的数量是。 对于整个输入图像,将共生成
个锚框。
上述生成锚框的方法在下面的multibox_prior函数中实现。 我们指定输入图像、尺寸列表和宽高比列表,然后此函数将返回所有的锚框。
#@save
def multibox_prior(data, sizes, ratios):
"""生成以每个像素为中心具有不同形状的锚框"""
in_height, in_width = data.shape[-2:]
device, num_sizes, num_ratios = data.device, len(sizes), len(ratios)
boxes_per_pixel = (num_sizes + num_ratios - 1)
size_tensor = torch.tensor(sizes, device=device)
ratio_tensor = torch.tensor(ratios, device=device)
# 为了将锚点移动到像素的中心,需要设置偏移量。
# 因为一个像素的高为1且宽为1,我们选择偏移我们的中心0.5
offset_h, offset_w = 0.5, 0.5
steps_h = 1.0 / in_height # 在y轴上缩放步长
steps_w = 1.0 / in_width # 在x轴上缩放步长
# 生成锚框的所有中心点
center_h = (torch.arange(in_height, device=device) + offset_h) * steps_h
center_w = (torch.arange(in_width, device=device) + offset_w) * steps_w
shift_y, shift_x = torch.meshgrid(center_h, center_w)
shift_y, shift_x = shift_y.reshape(-1), shift_x.reshape(-1)
# 生成“boxes_per_pixel”个高和宽,
# 之后用于创建锚框的四角坐标(xmin,xmax,ymin,ymax)
w = torch.cat((size_tensor * torch.sqrt(ratio_tensor[0]),
sizes[0] * torch.sqrt(ratio_tensor[1:])))\
* in_height / in_width # 处理矩形输入
h = torch.cat((size_tensor / torch.sqrt(ratio_tensor[0]),
sizes[0] / torch.sqrt(ratio_tensor[1:])))
# 除以2来获得半高和半宽
anchor_manipulations = torch.stack((-w, -h, w, h)).T.repeat(
in_height * in_width, 1) / 2
# 每个中心点都将有“boxes_per_pixel”个锚框,
# 所以生成含所有锚框中心的网格,重复了“boxes_per_pixel”次
out_grid = torch.stack([shift_x, shift_y, shift_x, shift_y],
dim=1).repeat_interleave(boxes_per_pixel, dim=0)
output = out_grid + anchor_manipulations
return output.unsqueeze(0)
img = d2l.plt.imread('./data/catdog.jpg')
h, w = img.shape[:2]
print(h, w)
X = torch.rand(size=(1, 3, h, w))
Y = multibox_prior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5])
Y.shape
将锚框变量Y的形状更改为(图像高度,图像宽度,以同一像素为中心的锚框的数量,4)后,我们可以获得以指定像素的位置为中心的所有锚框。 在接下来的内容中,我们访问以(250,250)为中心的第一个锚框。 它有四个元素:锚框左上角的轴坐标和右下角的
轴坐标。 输出中两个轴的坐标各分别除以了图像的宽度和高度。
为了显示以图像中以某个像素为中心的所有锚框,定义下面的show_bboxes函数来在图像上绘制多个边界框。
#@save
def show_bboxes(axes, bboxes, labels=None, colors=None):
"""显示所有边界框"""
def _make_list(obj, default_values=None):
if obj is None:
obj = default_values
elif not isinstance(obj, (list, tuple)):
obj = [obj]
return obj
labels = _make_list(labels)
colors = _make_list(colors, ['b', 'g', 'r', 'm', 'c'])
for i, bbox in enumerate(bboxes):
color = colors[i % len(colors)]
rect = d2l.bbox_to_rect(bbox.detach().numpy(), color)
axes.add_patch(rect)
if labels and len(labels) > i:
text_color = 'k' if color == 'w' else 'w'
axes.text(rect.xy[0], rect.xy[1], labels[i],
va='center', ha='center', fontsize=9, color=text_color,
bbox=dict(facecolor=color, lw=0))
正如从上面代码中所看到的,变量boxes中轴和
轴的坐标值已分别除以图像的宽度和高度。 绘制锚框时,我们需要恢复它们原始的坐标值。 因此,在下面定义了变量bbox_scale。 现在可以绘制出图像中所有以(250,250)为中心的锚框了。 如下所示,缩放比为0.75且宽高比为1的蓝色锚框很好地围绕着图像中的狗。
d2l.set_figsize()
bbox_scale = torch.tensor((w, h, w, h))
fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, boxes[250, 250, :, :] * bbox_scale,
['s=0.75, r=1', 's=0.5, r=1', 's=0.25, r=1', 's=0.75, r=2',
's=0.75, r=0.5'])

交并比(IoU)
我们刚刚提到某个锚框“较好地”覆盖了图像中的狗。 如果已知目标的真实边界框,那么这里的“好”该如何如何量化呢? 直观地说,可以衡量锚框和真实边界框之间的相似性。 杰卡德系数(Jaccard)可以衡量两组之间的相似性。 给定集合和
,他们的杰卡德系数是他们交集的大小除以他们并集的大小:
事实上,我们可以将任何边界框的像素区域视为一组像素。通 过这种方式,我们可以通过其像素集的杰卡德系数来测量两个边界框的相似性。 对于两个边界框,它们的杰卡德系数通常称为交并比(intersection over union,IoU),即两个边界框相交面积与相并面积之比,如图所示。 交并比的取值范围在0和1之间:0表示两个边界框无重合像素,1表示两个边界框完全重合。

接下来部分将使用交并比来衡量锚框和真实边界框之间、以及不同锚框之间的相似度。 给定两个锚框或边界框的列表,以下box_iou函数将在这两个列表中计算它们成对的交并比。
#@save
def box_iou(boxes1, boxes2):
"""计算两个锚框或边界框列表中成对的交并比"""
box_area = lambda boxes: ((boxes[:, 2] - boxes[:, 0]) *
(boxes[:, 3] - boxes[:, 1]))
# boxes1,boxes2,areas1,areas2的形状:
# boxes1:(boxes1的数量,4),
# boxes2:(boxes2的数量,4),
# areas1:(boxes1的数量,),
# areas2:(boxes2的数量,)
areas1 = box_area(boxes1)
areas2 = box_area(boxes2)
# inter_upperlefts,inter_lowerrights,inters的形状:
# (boxes1的数量,boxes2的数量,2)
inter_upperlefts = torch.max(boxes1[:, None, :2], boxes2[:, :2])
inter_lowerrights = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])
inters = (inter_lowerrights - inter_upperlefts).clamp(min=0)
# inter_areasandunion_areas的形状:(boxes1的数量,boxes2的数量)
inter_areas = inters[:, :, 0] * inters[:, :, 1]
union_areas = areas1[:, None] + areas2 - inter_areas
return inter_areas / union_areas
在训练数据中标注锚框
在训练集中,我们将每个锚框视为一个训练样本。 为了训练目标检测模型,我们需要每个锚框的类别(class)和偏移量(offset)标签,其中前者是与锚框相关的对象的类别,后者是真实边界框相对于锚框的偏移量。 在预测时,我们为每个图像生成多个锚框,预测所有锚框的类别和偏移量,根据预测的偏移量调整它们的位置以获得预测的边界框,最后只输出符合特定条件的预测边界框。
目标检测训练集带有真实边界框的位置及其包围物体类别的标签。 要标记任何生成的锚框,我们可以参考分配到的最接近此锚框的真实边界框的位置和类别标签。 下文将介绍一个算法,它能够把最接近的真实边界框分配给锚框。
将真实边界框分配给锚框
给定图像,假设锚框是,真实边界框是
,其中
。 让我们定义一个矩阵
,其中第
行、第
列的元素
是锚框
和真实边界框
的IoU。 该算法包含以下步骤。

下面用一个具体的例子来说明上述算法。如图所示,假设矩阵中的最大值为
,我们将真实边界框
分配给锚框
。 然后,我们丢弃矩阵第2行和第3列中的所有元素,在剩余元素(阴影区域)中找到最大的
,然后将真实边界框
分配给锚框
。 接下来,丢弃矩阵第7行和第1列中的所有元素,在剩余元素(阴影区域)中找到最大的
,然后将真实边界框
分配给锚框
。最后,丢弃矩阵第5行和第4列中的所有元素,在剩余元素(阴影区域)中找到最大的
,然后将真实边界框
分配给锚框
。之后,我们只需要遍历剩余的锚框
,然后根据阈值确定是否为它们分配真实边界框。

此算法在下面的assign_anchor_to_bbox函数中实现。
#@save
def assign_anchor_to_bbox(ground_truth, anchors, device, iou_threshold=0.5):
"""将最接近的真实边界框分配给锚框"""
num_anchors, num_gt_boxes = anchors.shape[0], ground_truth.shape[0]
# 位于第i行和第j列的元素x_ij是锚框i和真实边界框j的IoU
jaccard = box_iou(anchors, ground_truth)
# 对于每个锚框,分配的真实边界框的张量
anchors_bbox_map = torch.full((num_anchors,), -1, dtype=torch.long,
device=device)
# 根据阈值,决定是否分配真实边界框
max_ious, indices = torch.max(jaccard, dim=1)
anc_i = torch.nonzero(max_ious >= iou_threshold).reshape(-1)
box_j = indices[max_ious >= iou_threshold]
anchors_bbox_map[anc_i] = box_j
col_discard = torch.full((num_anchors,), -1)
row_discard = torch.full((num_gt_boxes,), -1)
for _ in range(num_gt_boxes):
max_idx = torch.argmax(jaccard)
box_idx = (max_idx % num_gt_boxes).long()
anc_idx = (max_idx / num_gt_boxes).long()
anchors_bbox_map[anc_idx] = box_idx
jaccard[:, box_idx] = col_discard
jaccard[anc_idx, :] = row_discard
return anchors_bbox_map
标记类别和偏移量
现在我们可以为每个锚框标记类别和偏移量了。 假设一个锚框被分配了一个真实边界框
。 一方面,锚框
的类别将被标记为与
相同。 另一方面,锚框
的偏移量将根据
和
中心坐标的相对位置以及这两个框的相对大小进行标记。 鉴于数据集内不同的框的位置和大小不同,我们可以对那些相对位置和大小应用变换,使其获得分布更均匀且易于拟合的偏移量。这里介绍一种常见的变换。 给定框
和
,中心坐标分别为
和
,宽度分别为
和
,高度分别为
和
,可以将
的偏移量标记为:
其中常量的默认值为 ,
。 这种转换在下面的 offset_boxes 函数中实现。
#@save
def offset_boxes(anchors, assigned_bb, eps=1e-6):
"""对锚框偏移量的转换"""
c_anc = d2l.box_corner_to_center(anchors)
c_assigned_bb = d2l.box_corner_to_center(assigned_bb)
offset_xy = 10 * (c_assigned_bb[:, :2] - c_anc[:, :2]) / c_anc[:, 2:]
offset_wh = 5 * torch.log(eps + c_assigned_bb[:, 2:] / c_anc[:, 2:])
offset = torch.cat([offset_xy, offset_wh], axis=1)
return offset
如果一个锚框没有被分配真实边界框,我们只需将锚框的类别标记为背景(background)。 背景类别的锚框通常被称为负类锚框,其余的被称为正类锚框。 我们使用真实边界框(labels参数)实现以下multibox_target函数,来标记锚框的类别和偏移量(anchors参数)。 此函数将背景类别的索引设置为零,然后将新类别的整数索引递增一。
#@save
def multibox_target(anchors, labels):
"""使用真实边界框标记锚框"""
batch_size, anchors = labels.shape[0], anchors.squeeze(0)
batch_offset, batch_mask, batch_class_labels = [], [], []
device, num_anchors = anchors.device, anchors.shape[0]
for i in range(batch_size):
label = labels[i, :, :]
anchors_bbox_map = assign_anchor_to_bbox(
label[:, 1:], anchors, device)
bbox_mask = ((anchors_bbox_map >= 0).float().unsqueeze(-1)).repeat(
1, 4)
# 将类标签和分配的边界框坐标初始化为零
class_labels = torch.zeros(num_anchors, dtype=torch.long,
device=device)
assigned_bb = torch.zeros((num_anchors, 4), dtype=torch.float32,
device=device)
# 使用真实边界框来标记锚框的类别。
# 如果一个锚框没有被分配,标记其为背景(值为零)
indices_true = torch.nonzero(anchors_bbox_map >= 0)
bb_idx = anchors_bbox_map[indices_true]
class_labels[indices_true] = label[bb_idx, 0].long() + 1
assigned_bb[indices_true] = label[bb_idx, 1:]
# 偏移量转换
offset = offset_boxes(anchors, assigned_bb) * bbox_mask
batch_offset.append(offset.reshape(-1))
batch_mask.append(bbox_mask.reshape(-1))
batch_class_labels.append(class_labels)
bbox_offset = torch.stack(batch_offset)
bbox_mask = torch.stack(batch_mask)
class_labels = torch.stack(batch_class_labels)
return (bbox_offset, bbox_mask, class_labels)
一个例子
下面通过一个具体的例子来说明锚框标签。 我们已经为加载图像中的狗和猫定义了真实边界框,其中第一个元素是类别(0代表狗,1代表猫),其余四个元素是左上角和右下角的轴坐标(范围介于0和1之间)。 我们还构建了五个锚框,用左上角和右下角的坐标进行标记:
(索引从0开始)。 然后我们在图像中绘制这些真实边界框和锚框。
ground_truth = torch.tensor([[0, 0.1, 0.08, 0.52, 0.92],
[1, 0.55, 0.2, 0.9, 0.88]])
anchors = torch.tensor([[0, 0.1, 0.2, 0.3], [0.15, 0.2, 0.4, 0.4],
[0.63, 0.05, 0.88, 0.98], [0.66, 0.45, 0.8, 0.8],
[0.57, 0.3, 0.92, 0.9]])
fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, ground_truth[:, 1:] * bbox_scale, ['dog', 'cat'], 'k')
show_bboxes(fig.axes, anchors * bbox_scale, ['0', '1', '2', '3', '4']);

使用上面定义的multibox_target函数,我们可以根据狗和猫的真实边界框,标注这些锚框的分类和偏移量。 在这个例子中,背景、狗和猫的类索引分别为0、1和2。 下面我们为锚框和真实边界框样本添加一个维度。
labels = multibox_target(anchors.unsqueeze(dim=0),
ground_truth.unsqueeze(dim=0))
- 返回的结果中有三个元素,都是张量格式。第三个元素包含标记的输入锚框的类别。
- 返回的第二个元素是掩码(mask)变量,形状为(批量大小,锚框数的四倍)。 掩码变量中的元素与每个锚框的4个偏移量一一对应。 由于我们不关心对背景的检测,负类的偏移量不应影响目标函数。 通过元素乘法,掩码变量中的零将在计算目标函数之前过滤掉负类偏移量。
- 返回的第一个元素包含了为每个锚框标记的四个偏移值。 请注意,负类锚框的偏移量被标记为零。
让我们根据图像中的锚框和真实边界框的位置来分析下面返回的类别标签。 首先,在所有的锚框和真实边界框配对中,锚框与猫的真实边界框的IoU是最大的。 因此,
的类别被标记为猫。 去除包含
或猫的真实边界框的配对,在剩下的配对中,锚框
和狗的真实边界框有最大的IoU。 因此,
的类别被标记为狗。 接下来,我们需要遍历剩下的三个未标记的锚框:
、
和
。 对于
,与其拥有最大IoU的真实边界框的类别是狗,但IoU低于预定义的阈值(0.5),因此该类别被标记为背景; 对于
,与其拥有最大IoU的真实边界框的类别是猫,IoU超过阈值,所以类别被标记为猫; 对于
,与其拥有最大IoU的真实边界框的类别是猫,但值低于阈值,因此该类别被标记为背景。
使用非极大值抑制预测边界框
在预测时,我们先为图像生成多个锚框,再为这些锚框一一预测类别和偏移量。 一个预测好的边界框则根据其中某个带有预测偏移量的锚框而生成。 下面我们实现了offset_inverse函数,该函数将锚框和偏移量预测作为输入,并应用逆偏移变换来返回预测的边界框坐标。
#@save
def offset_inverse(anchors, offset_preds):
"""根据带有预测偏移量的锚框来预测边界框"""
anc = d2l.box_corner_to_center(anchors)
pred_bbox_xy = (offset_preds[:, :2] * anc[:, 2:] / 10) + anc[:, :2]
pred_bbox_wh = torch.exp(offset_preds[:, 2:] / 5) * anc[:, 2:]
pred_bbox = torch.cat((pred_bbox_xy, pred_bbox_wh), axis=1)
predicted_bbox = d2l.box_center_to_corner(pred_bbox)
return predicted_bbox
当有许多锚框时,可能会输出许多相似的具有明显重叠的预测边界框,都围绕着同一目标。 为了简化输出,我们可以使用非极大值抑制(non-maximum suppression,NMS)合并属于同一目标的类似的预测边界框。以下是非极大值抑制的工作原理。 对于一个预测边界框,目标检测模型会计算每个类别的预测概率。 假设最大的预测概率为
,则该概率所对应的类别
即为预测的类别。 具体来说,我们将p称为预测边界框
的置信度(confidence)。 在同一张图像中,所有预测的非背景边界框都按置信度降序排序,以生成列表
。然后我们通过以下步骤操作排序列表
。

以下nms函数按降序对置信度进行排序并返回其索引。
#@save
def nms(boxes, scores, iou_threshold):
"""对预测边界框的置信度进行排序"""
B = torch.argsort(scores, dim=-1, descending=True)
keep = [] # 保留预测边界框的指标
while B.numel() > 0:
i = B[0]
keep.append(i)
if B.numel() == 1: break
iou = box_iou(boxes[i, :].reshape(-1, 4),
boxes[B[1:], :].reshape(-1, 4)).reshape(-1)
inds = torch.nonzero(iou <= iou_threshold).reshape(-1)
B = B[inds + 1]
return torch.tensor(keep, device=boxes.device)
我们定义以下multibox_detection函数来将非极大值抑制应用于预测边界框。 这里的实现有点复杂,请不要担心。我们将在实现之后,马上用一个具体的例子来展示它是如何工作的。
#@save
def multibox_detection(cls_probs, offset_preds, anchors, nms_threshold=0.5,
pos_threshold=0.009999999):
"""使用非极大值抑制来预测边界框"""
device, batch_size = cls_probs.device, cls_probs.shape[0]
anchors = anchors.squeeze(0)
num_classes, num_anchors = cls_probs.shape[1], cls_probs.shape[2]
out = []
for i in range(batch_size):
cls_prob, offset_pred = cls_probs[i], offset_preds[i].reshape(-1, 4)
conf, class_id = torch.max(cls_prob[1:], 0)
predicted_bb = offset_inverse(anchors, offset_pred)
keep = nms(predicted_bb, conf, nms_threshold)
# 找到所有的non_keep索引,并将类设置为背景
all_idx = torch.arange(num_anchors, dtype=torch.long, device=device)
combined = torch.cat((keep, all_idx))
uniques, counts = combined.unique(return_counts=True)
non_keep = uniques[counts == 1]
all_id_sorted = torch.cat((keep, non_keep))
class_id[non_keep] = -1
class_id = class_id[all_id_sorted]
conf, predicted_bb = conf[all_id_sorted], predicted_bb[all_id_sorted]
# pos_threshold是一个用于非背景预测的阈值
below_min_idx = (conf < pos_threshold)
class_id[below_min_idx] = -1
conf[below_min_idx] = 1 - conf[below_min_idx]
pred_info = torch.cat((class_id.unsqueeze(1),
conf.unsqueeze(1),
predicted_bb), dim=1)
out.append(pred_info)
return torch.stack(out)
现在让我们将上述算法应用到一个带有四个锚框的具体示例中。 为简单起见,我们假设预测的偏移量都是零,这意味着预测的边界框即是锚框。 对于背景、狗和猫其中的每个类,我们还定义了它的预测概率。
anchors = torch.tensor([[0.1, 0.08, 0.52, 0.92], [0.08, 0.2, 0.56, 0.95],
[0.15, 0.3, 0.62, 0.91], [0.55, 0.2, 0.9, 0.88]])
offset_preds = torch.tensor([0] * anchors.numel())
cls_probs = torch.tensor([[0] * 4, # 背景的预测概率
[0.9, 0.8, 0.7, 0.1], # 狗的预测概率
[0.1, 0.2, 0.3, 0.9]]) # 猫的预测概率
我们可以在图像上绘制这些预测边界框和置信度。
fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, anchors * bbox_scale,
['dog=0.9', 'dog=0.8', 'dog=0.7', 'cat=0.9'])

我们可以看到返回结果的形状是(批量大小,锚框的数量,6)。 最内层维度中的六个元素提供了同一预测边界框的输出信息。 第一个元素是预测的类索引,从0开始(0代表狗,1代表猫),值-1表示背景或在非极大值抑制中被移除了。 第二个元素是预测的边界框的置信度。 其余四个元素分别是预测边界框左上角和右下角的
output = multibox_detection(cls_probs.unsqueeze(dim=0),
offset_preds.unsqueeze(dim=0),
anchors.unsqueeze(dim=0),
nms_threshold=0.5)
output
删除-1类别(背景)的预测边界框后,我们可以输出由非极大值抑制保存的最终预测边界框。
fig = d2l.plt.imshow(img)
for i in output[0].detach().numpy():
if i[0] == -1:
continue
label = ('dog=', 'cat=')[int(i[0])] + str(i[1])
show_bboxes(fig.axes, [torch.tensor(i[2:]) * bbox_scale], label)

实践中,在执行非极大值抑制前,我们甚至可以将置信度较低的预测边界框移除,从而减少此算法中的计算量。 我们也可以对非极大值抑制的输出结果进行后处理。例如,只保留置信度更高的结果作为最终输出。
总结
我们以图像的每个像素为中心生成不同形状的锚框。
交并比(IoU)也被称为杰卡德系数,用于衡量两个边界框的相似性。它是相交面积与相并面积的比率。
在训练集中,我们需要给每个锚框两种类型的标签。一个是与锚框中目标检测的类别,另一个是锚框真实相对于边界框的偏移量。
预测期间可以使用非极大值抑制(NMS)来移除类似的预测边界框,从而简化输出。