聊聊 Redis 单线程为什么这么快

众所周知,Redis 在内存数据库领域内,可谓是独领风骚,应用非常广泛。这主要得益于其丰富的数据类型和极高的性能。

我们可能也听说了,Redis 是单线程的,并且在面试中也会经常被问到 “为什么单线程的 Redis 性能这么快?”,这篇文章我们就聊聊此问题。

首先,我们需要先领清楚一个事实,我们通常说的 Redis 是单线程,主要是指它的网络请求和执行命令的流程是单线处理的, 而整个 Redis Server 是多线程的 。比如持久化、lazyfree、集群数据同步等都是额外的线程处理的。

所以,严格来说,Redis 并不是单线程,但是我们一般把 Redis 称为单线程高性能。接下来,我也会把 Redis 称为单线程模式。而且,这也会促使你紧接着提问:“为什么用单线程?为什么单线程能这么快?”

为什么使用单线程

官方FAQ表示,因为 Redis 是基于内存的操作,CPU 不是 Redis 的瓶颈,Redis 的瓶颈最有可能是机器内存的大小或者网络带宽。既然单线程容易实现,而且 CPU 不会成为瓶颈,那就顺理成章地采用单线程的方案了。

本想着会有很高大上的技术,没想到就是一句官方看似糊弄我们的回答!但是,我们已经可以很清楚的解释了为什么Redis这么快,并且正是由于在单线程模式的情况下已经很快了,就没有必要在使用多线程了!

基于内存的操作

Redis 是一个 Key-value 内存数据库,它内部构是一个哈希表,根据指定的 Key 访问时,计算出 Key 的 hash 值后,只需要 O(1) 的时间复杂度就可以快速的定位到对应的数据。同时,Redis 提供了丰富的数据类型,并且其底层也是用了高效的 哈希表、跳表等高性能的数据结构,同时也使用高效的操作方式进行操作,这些操作都在内存中进行,并不会大量消耗 CPU 资源,所以速度极快。

IO多路复用技术

Linux 中的 IO 多路复用机制是指一个线程处理多个 IO 流,也就是 我们经常听到的 select / epoll 机制。Redis 网络框架调用 epoll 机制,让内核监听这些套接字。此时,Redis 线程不会阻塞在某一个特定的监听或已连接套接字上,也就是说,不会阻塞在某一个特定的客户端请求处理上。正因为此,Redis 可以同时和多个客户端连接并处理请求,从而提升并发性。

同时,Redis 利用了 IO 多路复用技术的事件驱动模型,这样,Redis 无需一直轮询是否有请求实际发生,这就可以避免造成 CPU 资源浪费。同时,Redis 在对事件队列中的事件进行处理时,会调用相应的处理函数,这就实现了基于事件的回调。因为 Redis 一直在对事件队列进行处理,所以能及时响应客户端请求,提升 Redis 的响应性能。

单线程的优点

基于以上特性,Redis采用单线程已足够达到非常高的性能,所以 Redis 没有采用多线程模型。

另外,单线程模型还带了以下好处:

  • 代码更清晰,处理逻辑更简单
  • 不用去考虑各种锁的问题,不存在加锁释放锁操作,没有因为可能出现死锁而导致的性能消耗
  • 不存在多进程或者多线程导致的切换而导致的消耗

所以Redis正是基于以上这些方面,所以采用了单线程模型来完成请求处理的工作。

单线程的缺点

  • 如果某个请求是比较耗时的操作,那么整个Redis就会阻塞住,其他请求也无法进来,直到这个耗时久的操作处理完成并返回,其他请求才能被处理到。

  • 无法发挥多核 CPU 性能,不过可以通过在单机开多个Redis实例来完善

多线程优化

  • Redis4.0 之后,Redis引入了lazyfree的机制,提供了unlinkflushall ayscflushdb async等命令和lazyfree-lazy-evictionlazyfree-lazy-expire等机制来异步释放内存,它主要是为了解决在释放大内存数据导致整个redis阻塞的性能问题。
  • Redis 6.0 又引入了多线程来完成请求数据的协议解析,进一步提升性能。它主要是解决高并发场景下,单线程解析请求数据协议带来的压力。请求数据的协议解析由多线程完成之后,后面的请求处理阶段依旧还是单线程排队处理。

总结

  1. Redis是纯内存数据库,一般都是简单的存取操作,所有读写速度都很快

  2. 再说一下 IO,Redis使用的是非阻塞IO,IO多路复用。

  3. Redis采用了单线程的模型,保证了每个操作的原子性,也减少了线程的上下文切换和竞争。

  4. 另外,数据结构也帮了不少忙,Redis全程使用 hash 结构,读取速度快,还有一些特殊的数据结构,对数据存储进行了优化,如压缩表,对短数据进行压缩存储,再如,跳表,使用有序的数据结构加快读取的速度。

  5. 还有一点,Redis采用自己实现的事件分离器,效率比较高,内部采用非阻塞的执行方式,吞吐能力比较大。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,504评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,434评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,089评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,378评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,472评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,506评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,519评论 3 413
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,292评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,738评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,022评论 2 329
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,194评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,873评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,536评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,162评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,413评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,075评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,080评论 2 352

推荐阅读更多精彩内容