基于tensorflow的一元一次方程回归预测

2018年9月12日笔记

0.检测tensorflow环境

安装tensorflow命令:pip install tensorflow
下面一段代码能够成功运行,则说明安装tensorflow环境成功。

import tensorflow as tf
hello = tf.constant('hello world')
session = tf.Session()
session.run(hello)

上面一段代码成功运行的结果如下图所示:


image.png

1.数据准备

import numpy as np

w = 0.1
b = 0.3
X = np.random.rand(100).astype('float32')
y = X * w + b

第1行代码导入numpy库,起别名np;
第5行代码调用np.random.rand方法随机产生100个值处于(0,1)之间的数。
np.random.rand官方文档链接:https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.rand.html
第6行代码使用了ndarray对象的广播特性,将X中的每一个值乘以w,再加上b的结果赋值给变量y。

2.搭建神经网络

Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
biases = tf.Variable(tf.zeros([1]))
predict_y = Weights * X + biases
loss = tf.reduce_mean(tf.square(predict_y - y))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

第1、2行代码调用tf.Variable方法实例化tensorflow中的变量对象,tf.Variable方法中的参数为tensorflow中的Tensor对象;


image.png

image.png

image.png

第3行代码将变量与特征矩阵的计算结果赋值给变量predict_y,数据类型如下图所示:


image.png

第4行代码定义损失函数,等同于回归预测中的MSE,中文叫做均方误差,数据类型如下图所示:
image.png

第5行代码调用tf.train库中的GradientDescentOptimizer方法实例化优化器对象,数据类型如下图所示:
image.png

第6行代码调用优化器的minimize方法定义训练方式,参数为损失函数。方法的返回结果赋值给变量train,数据类型如下图所示:


image.png

3.变量初始化

init = tf.global_variables_initializer()
session = tf.Session()
session.run(init)

对于神经网络模型,重要是其中的W、b这两个参数。
开始神经网络模型训练之前,这两个变量需要初始化。
第1行代码调用tf.global_variables_initializer实例化tensorflow中的Operation对象。


image.png

第2行代码调用tf.Session方法实例化会话对象;
第3行代码调用tf.Session对象的run方法做变量初始化。

4.模型训练

模型训练200次,每运行1次代码session.run(train)则模型训练1次。
在训练次数为20的整数倍时,打印训练步数、训练后更新的Weights和biases值。

for step in range(201):
    session.run(train)
    if step % 20 == 0:
        print(step, session.run(Weights), session.run(biases))

上面一段代码的运行结果如下:


image.png

5.完整代码

下面代码与前文相比,改变了w和b的值。

import tensorflow as tf
import numpy as np

w = 2
b = 0.5
X = np.random.rand(100).astype('float32')
y = X * w + b

Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
biases = tf.Variable(tf.zeros([1]))
predict_y = Weights * X + biases
loss = tf.reduce_mean(tf.square(predict_y - y))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

init = tf.global_variables_initializer()
session = tf.Session()
session.run(init)

for step in range(201):
    session.run(train)
    if step % 20 == 0:
        print(step, session.run(Weights), session.run(biases))

上面一段代码的运行结果如下:

0 [1.2842455] [1.2999418]
20 [1.7820456] [0.6222662]
40 [1.9463692] [0.5300854]
60 [1.9868033] [0.50740296]
80 [1.9967527] [0.5018216]
100 [1.9992009] [0.5004483]
120 [1.9998035] [0.5001102]
140 [1.9999516] [0.5000271]
160 [1.9999882] [0.5000066]
180 [1.999997] [0.50000167]
200 [1.9999994] [0.50000036]

6.总结

1.这是本文作者写的第1篇关于tensorflow的文章,加深了对tensorflow框架的理解;
2.一元一次方程回归预测是简单的回归问题,主要用于熟悉tensorflow的流程。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,245评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,749评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,960评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,575评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,668评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,670评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,664评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,422评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,864评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,178评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,340评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,015评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,646评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,265评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,494评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,261评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,206评论 2 352

推荐阅读更多精彩内容