[Cascading]~Hadoop Cascading简介

Hadoop Cascading简介 - 我的学习成长日记 - 博客频道 - CSDN.NET
http://blog.csdn.net/OnlyQi/article/details/50781876

Hadoop Cascading 是一个开源框架,该框架搭建在Hadoop之上。Cascading提供了一系列易用的数据操作API,如count,group by,join等等共开发人员直接使用,且该框架自动将这些数据操作翻译为底层Hadoop可运行的Map和reduce操作,从而大大加快程序开发速度。
Cascading中使用了一系列特有的概念如flow(数据流),tap,pipe(数据管道)等。flow可以理解为一个数据流,数据流过时被一一处理。flow的起点是source tap,也就是数据源;终点是sink tap也就是数据输出。tap之间由pipe相连接。下列代码可以容易的理解它们的相互关系:
用例一
String inPath = args[ 0 ];Tap inTap = new Hfs( new TextDelimited( true, "\t" ), inPath );String outPath = args[ 1 ];Tap outTap = new Hfs( new TextDelimited( true, "\t" ), outPath );Pipe copyPipe = new Pipe( "copy" );FlowDef flowDef = FlowDef.flowDef() .setName( "copy" ) .addSource( copyPipe, inTap ) .addTailSink( copyPipe, outTap );Flow wcFlow = flowConnector.connect( flowDef );wcFlow.complete();

上面就是一个完整的Cascading小程序,它简单的将文件从源目录拷贝到目标目录。首先我们定义了in tap和out tap,它们都是HDFS中的目录。之后我们定义了一个名为“copy”的pipe。然后定义了一个flow,由代码可知我们给这个flow添加了source tap和sink tap,由“copy”pipe相连。最后启动这个flow。
我们再来回顾一下这个过程。Cascading会形成由一个或多个step构成的物理执行计划,通常我们称之为有向无环图(DAG,它在大数据领域得到了广泛应用,例如在Hive中执行HQL时,实际也是自动产生了DAG并在Hadoop上运行)。当Cascading运行时,数据以键值对的形式流过DAG图。一个step在Hadoop中可能对应多个map或reduce阶段。例如我们知道在Hadoop中做join操作需要编写reducer来完成,那么在cascading中虽然我们简单的使用其提供的join API,但实际上该API会被转换为reducer并在Hadoop上执行。
接下来再看一个复杂一些的例子,如何使用cascading计算word count。word count在大数据领域就像打印“hello world”一样,是经典的入门案例。如果不清楚这个案例,请先参考文章《MapReduce概念》: http://blog.csdn.net/onlyqi/article/details/50477899
用例二 word count的第一步是将输入的字符串按空格分隔,得到一个一个的单词:
Fields token = new Fields( "token" );Fields text = new Fields( "text" );RegexSplitGenerator splitter= new RegexSplitGenerator( token, "[ \[\]\(\),.]" );Pipe docPipe = new Each( "token", text, splitter, Fields.RESULTS );

定义一个splitter,并按照splitter中定义的正则表达式将输入字符串分隔成一个一个的单词,也称为token。从docPipe流出的即为一个一个的单词。注意new each()指对每一个输入的键值对都应用该逻辑。
Pipe wcPipe = new Pipe( "wc", docPipe );wcPipe = new GroupBy( wcPipe, token );wcPipe = new Every( wcPipe, Fields.ALL, new Count(), Fields.ALL );

定义名为wcPipe的管道,与docPipe相连。在wcPipe中根据token做groupby操作,也就是汇总操作。注意new every()指在一批键值对上做操作,即聚合操作。
FlowDef flowDef = FlowDef.flowDef().setName( "wc" ).addSource( docPipe, docTap ).addTailSink( wcPipe, wcTap );

最后定义flow,执行flow并将结果写入wc.dot文件: Flow wcFlow = flowConnector.connect( flowDef ); wcFlow.writeDOT( “dot/wc.dot” ); wcFlow.complete();
总得来说代码量还是比较少的,但个人感觉语义设计的不是很清晰。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容