图像识别实战(四)------动态图&模型训练

动态图

动态图对应的是命令式编程

可以不用事先定义神经网络的结构,将神经网络的定义和执行同步进行

与之相反的便是静态图,静态图和声明式编程相关:

需要事先定义好神经网络的结构,然后再执行整个图结构。

对比

如果想要实现如下功能。

  1. 如果inp1各元素之和小于inp2各元素之和,那么执行inp1与 inp2各元素对应相加。

  2. 如果inp1各元素之和大于等于inp2各元素之和,那么执行inp1与 inp2各元素对应相减。

使用动态图进行训练

import paddle.fluid asfluid 
import numpy as np  
inp1 = np.random.rand(4, 3, 3)  
inp2 = np.random.rand(4, 3, 3)  
# dynamic graph 
with fluid.dygraph.guard(): 
    if np.sum(inp1) <np.sum(inp2):   
        x =fluid.layers.elementwise_add(inp1, inp2) 
    else:   
        x =fluid.layers.elementwise_sub(inp1, inp2) 
    dygraph_result = x.numpy()

核心代码只有6行,而如果使用静态图的话便至少需要20行的核心代码,

So

优势

  • 动态图与静态图的最大区别是采用了命令式的编程方式,任务不用在区分组网阶段和执行阶段。代码运行完成之后,可以立马获取结果。由于采用与我们书写大部分Python和c++的方式是一致的命令式编程方式,程序的编写和调试会非常的容易。
  • 能够使用Python的控制流,例如for,if else, switch等,对于rnn等任务的支持更方便。
  • 动态图能够与numpy更好的交互。

一句话总结

思想简单,代码量少!

使用方法


import paddle.fluid as fluid    
import numpy as np   
x = np.ones([10, 2, 2], np.float32) 
    
with fluid.dygraph.guard(): 
     inputs = []    
     seq_len = x.shape[0]   
     for i in range(seq_len):   
        inputs.append(fluid.dygraph.to_variable(x[i]))  
     ret =fluid.layers.sums(inputs) 
     print(ret.numpy())

output

 [[10. 10.] 
   [10. 10.]]  
    loss =fluid.layers.reduce_sum(ret)  
    loss.backward() 
    print(loss.gradient())

output

 [1.]

本次项目的实战代码:

用动态图进行模型训练

use_cuda = True
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
with fluid.dygraph.guard():
    model=MyDNN() 
    model.train() 
    opt=fluid.optimizer.SGDOptimizer(learning_rate=0.005, parameter_list=model.parameters())
    epochs_num=20 #迭代次数
    
    for pass_num in range(epochs_num):
        
        for batch_id,data in enumerate(train_reader()):
            
            images=np.array([x[0].reshape(3,100,100) for x in data],np.float32)
            
            labels = np.array([x[1] for x in data]).astype('int64')
            labels = labels[:, np.newaxis]
            # print(images.shape)
            image=fluid.dygraph.to_variable(images)
            label=fluid.dygraph.to_variable(labels)
            predict=model(image)#预测
            # print(predict)
            loss=fluid.layers.cross_entropy(predict,label)
            avg_loss=fluid.layers.mean(loss)#获取loss值
            
            acc=fluid.layers.accuracy(predict,label)#计算精度
            
            if batch_id!=0 and batch_id%50==0:
                print("train_pass:{},batch_id:{},train_loss:{},train_acc:{}".format(pass_num,batch_id,avg_loss.numpy(),acc.numpy()))
            
            avg_loss.backward()
            opt.minimize(avg_loss)
            model.clear_gradients()
            
    fluid.save_dygraph(model.state_dict(),'MyDNN')#保存模型

如果想了解图像识别实战的全过程,请务必点击博主名字,进入主页查看全部。
别忘了留下,你的点赞、评论和关注偶~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352