环境
➜ go version
go version go1.15.3 darwin/amd64
初始化
- 下标
func newSlice() []int {
arr := [4]int{5, 7, 11, 21}
slice := arr[1:3]
return slice
}
- 字面量
var s = []int{7, 11, 21}
_ = s
关键字
var s = make([]int, 0)
Compile Time
cmd/compile/internal/types/type.go
// NewSlice returns the slice Type with element type elem.
func NewSlice(elem *Type) *Type {
if t := elem.Cache.slice; t != nil {
if t.Elem() != elem {
Fatalf("elem mismatch")
}
return t
}
t := New(TSLICE)
t.Extra = Slice{Elem: elem}
elem.Cache.slice = t
return t
}
Runtime
reflect/value.go
type SliceHeader struct {
Data uintptr
Len int
Cap int
}
Data
指向数组的指针
Len
切片的长度
Cap
切片的容量,数组的长度
元素访问(cmd/compile/internal/gc/ssa.go
)
- len,cap
func (s *state) expr(n *Node) *ssa.Value {
switch n.Op {
case OLEN, OCAP:
switch {
case n.Left.Type.IsSlice():
op := ssa.OpSliceLen
if n.Op == OCAP {
op = ssa.OpSliceCap
}
return s.newValue1(op, types.Types[TINT], s.expr(n.Left))
}
}
}
- INDEX
func (s *state) expr(n *Node) *ssa.Value {
switch n.Op {
case OINDEX:
switch {
case n.Left.Type.IsSlice():
p := s.addr(n)
return s.load(n.Left.Type.Elem(), p)
}
}
- APPEND(
cmd/compile/internal/gc/ssa.go
)
- inplace is false
func (s *state) append(n *Node, inplace bool) *ssa.Value {
ptr, len, cap := s
newlen := len + 3
if newlen > cap {
ptr, len, cap = growslice(s, newlen)
newlen = len + 3 // recalculate to avoid a spill
}
// with write barriers, if needed:
*(ptr+len) = e1
*(ptr+len+1) = e2
*(ptr+len+2) = e3
return makeslice(ptr, newlen, cap)
}
- inplace is true
func (s *state) append(n *Node, inplace bool) *ssa.Value {
a := &s
ptr, len, cap := s
newlen := len + 3
if uint(newlen) > uint(cap) {
newptr, len, newcap = growslice(ptr, len, cap, newlen)
vardef(a) // if necessary, advise liveness we are writing a new a
*a.cap = newcap // write before ptr to avoid a spill
*a.ptr = newptr // with write barrier
}
newlen = len + 3 // recalculate to avoid a spill
*a.len = newlen
// with write barriers, if needed:
*(ptr+len) = e1
*(ptr+len+1) = e2
*(ptr+len+2) = e3
}
- 扩容(
runtime/slice.go
)
func growslice(et *_type, old slice, cap int) slice {
newcap := old.cap
doublecap := newcap + newcap
if cap > doublecap {
newcap = cap
} else {
if old.len < 1024 {
newcap = doublecap
} else {
// Check 0 < newcap to detect overflow
// and prevent an infinite loop.
for 0 < newcap && newcap < cap {
newcap += newcap / 4
}
// Set newcap to the requested cap when
// the newcap calculation overflowed.
if newcap <= 0 {
newcap = cap
}
}
}
}
- 期望容量大于当前容量的 2 倍,新容量为期望容量。
- 旧长度小于 1024 ,新容量为旧容量的 2 倍。
- 旧容量以 25% 的速率进行扩容,直到大于等于期望容量。
- 内存字节对齐
switch {
case et.size == 1:
lenmem = uintptr(old.len)
newlenmem = uintptr(cap)
capmem = roundupsize(uintptr(newcap))
overflow = uintptr(newcap) > maxAlloc
newcap = int(capmem)
case et.size == sys.PtrSize:
lenmem = uintptr(old.len) * sys.PtrSize
newlenmem = uintptr(cap) * sys.PtrSize
capmem = roundupsize(uintptr(newcap) * sys.PtrSize)
overflow = uintptr(newcap) > maxAlloc/sys.PtrSize
newcap = int(capmem / sys.PtrSize)
case isPowerOfTwo(et.size):
var shift uintptr
if sys.PtrSize == 8 {
// Mask shift for better code generation.
shift = uintptr(sys.Ctz64(uint64(et.size))) & 63
} else {
shift = uintptr(sys.Ctz32(uint32(et.size))) & 31
}
lenmem = uintptr(old.len) << shift
newlenmem = uintptr(cap) << shift
capmem = roundupsize(uintptr(newcap) << shift)
overflow = uintptr(newcap) > (maxAlloc >> shift)
newcap = int(capmem >> shift)
default:
lenmem = uintptr(old.len) * et.size
newlenmem = uintptr(cap) * et.size
capmem, overflow = math.MulUintptr(et.size, uintptr(newcap))
capmem = roundupsize(capmem)
newcap = int(capmem / et.size)
}
切片拷贝
- 编译时(
cmd/compile/internal/gc/walk.go
)
n := len(a)
if n > len(b) {
n = len(b)
}
if a.ptr != b.ptr {
memmove(a.ptr, b.ptr, n*sizeof(elem(a)))
}
- 运行时(
src/runtime/slice.go
)
func slicecopy(toPtr unsafe.Pointer, toLen int, fmPtr unsafe.Pointer, fmLen int, width uintptr) int {
if fmLen == 0 || toLen == 0 {
return 0
}
n := fmLen
if toLen < n {
n = toLen
}
if width == 0 {
return n
}
size := uintptr(n) * width
if size == 1 { // common case worth about 2x to do here
// TODO: is this still worth it with new memmove impl?
*(*byte)(toPtr) = *(*byte)(fmPtr) // known to be a byte pointer
} else {
memmove(toPtr, fmPtr, size)
}
return n
}