Tensorflow之pb文件分析

[原文连接](https://blog.csdn.net/u014061630/article/details/80557028

使用Tensorboard分析pb文件有两种方法:

方法一:

  • 利用pb文件恢复计算图

  • 利用Tensorboard查看计算图的结构

方法二

方法一

1.从pb文件中恢复计算图

import tensorflow as tf

model = 'model.pb') #请将这里的pb文件路径改为自己的
graph = tf.get_default_graph()
graph_def = graph.as_graph_def()
graph_def.ParseFromString(tf.gfile.FastGFile(model, 'rb').read())
tf.import_graph_def(graph_def, name='graph')
summaryWriter = tf.summary.FileWriter('log/', graph)

2.利用Tensorboard查看计算图

在命令行运行以下命令,启动Tensorboard

#命令行运行里执行
tensorboard --logdir log/ #这里的路径就是1中最后一行图保存的路径,请根据自己的需要更改

方法二

利用tools里面的import_pb_to_tensorboard.py工具

#命令行
python -m tensorflow.python.tools.import_pb_to_tensorboard \
  --model_dir="your_path/model.pb" 
  --log_dir="your_log_path"  
tensorboard --logdir="your_log_path" #启动tensorboard  

或者

#python3
from tensorflow.python.tools.import_pb_to_tensorboard import import_to_tensorboard
model = os.path.join(model_dir, 'tensorflow_inception_graph.pb')
import_to_tensorboard(model_dir=model, log_dir='log/') 
#命令行
tensorboard --logdir="your_log_path" #启动tensorboard

经过查看源码,第二种方法其实是对第一种方法的包装。
两种方法是一致的,只不过第二种方法更加便捷。

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容