《deeplearning.ai》 课程一第四周 | Deep neural networks

deeplearning.ai 是机器学习领域大牛Andrew Ng在Coursera上公布的新的深度学习的课程,相比之前机器学习的课程,本课程更偏重于深度学习的领域。

本文是课程一《Neural Networks and Deep Learning》的第四周笔记,上周给大家介绍了Shallow Neural Networks,本周我们将为大家介绍Deep Neural Networks。

注:如果没有任何机器学习基础,直接学习本课程可能会有些费力,建议大家先去学习Andrew Ng机器学习课程,传送门在此 Coursera Machine Learning

一、基本概念

深层神经网络,顾名思义,就是有很多隐藏层的神经网络,所以其符号表示与神经网络是一样的,即使用中括号的上角标来表示第几层,比如a[0]表示第0层,即输入层;a[2]则表示第二层隐藏层。

下图即逻辑回归、浅层神经网络与深层神经网络的对比。


image.png

由于其符号表示、前向传播、反向传播、参数及向量化已在前一章介绍过了,这里就不再赘述了,不清楚的可以回顾下上一周的笔记。


image.png

这里只是多了层数而已,完全套用前一章神经网络的前向传播和反向传播即可。


image.png
image.png
image.png

二、直观解释

下图为深层神经网络的直观解释,举了图像识别、语音识别等例子,详细讲解可以去看下视频。 为什么使用深层表示.

image.png

三、参数与超参数

在神经网络中的参数指的是W,b,它们是在一次次梯度下降算法的迭代中不断优化的。
超参数指的是学习率、迭代数、隐藏层的层数和隐藏神经元的个数(神经网络的结构)及激活函数的选择等,超参数是需要我们在训练前手动设定的。


image.png

超参数的选择会决定了最终的参数W,b,还会影响模型的训练速度等,所以超参数的选择非常重要,在下一章中我们会讲解如何选择超参数。

四、本周内容回顾

通过本周学习,我们学习到了:

  • 深层神经网络的基本概念
  • 深层神经网络的前向传播和反向传播
  • 参数与超参数的解释

最后贴出网易云课堂的链接,有兴趣的可以关注下我的知乎或博客,链接在最下方,可以交流下学习经验哈

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容