拓扑学

拓扑学(topology)是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。在拓扑学里,重要的拓扑性质包括连通性与紧致性。 拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。拓扑学是由几何学与集合论里发展出来的学科,研究空间、维度与变换等概念。这些词汇的来源可追溯至哥特佛莱德·莱布尼茨,他在17世纪提出“位置的几何学”(geometria situs)和“位相分析”(analysis situs)的说法。莱昂哈德·欧拉的柯尼斯堡七桥问题与欧拉示性数被认为是该领域最初的定理。 拓扑学的一些内容早在十八世纪就出现了,后来在拓扑学的形成中占着重要的地位。学科起源/拓扑学 编辑

有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题。后来在拓扑学的形成中占着重要的地位。譬如哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。

七桥问题

七桥问题图册

18世纪著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如左图的“一笔画”问题,证明上述走法是不可能的。

有关图论研究的热点问题。18世纪初普鲁士的哥尼斯堡,有一条河穿过,河上有两个小岛,有七座桥把两个岛与河岸联系起来(如左图上)。有个人提出一个问题:一个步行者怎样才能不重复、不遗漏地一次走完七座桥,最后回到出发点。后来大数学家欧拉把它转化成一个几何问题(如左图下)——一笔画问题。他不仅解决了此问题,且给出了连通图可以一笔画的充要条件是:奇点的数目不是0个就是2个(连到一点的数目如是奇数条,就称为奇点,如果是偶数条就称为偶点,要想一笔画成,必须中间点均是偶点,也就是有来路必有另一条去路,奇点只可能在两端,因此任何图能一笔画成,奇点要么没有要么在两端)  

欧拉定理

拓扑学图册

在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。

根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。

四色问题

著名的“四色问题”也是与拓扑学发展有关的问题,又称四色猜想。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时发现:每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。

1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,做了100亿种判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。

学科简介/拓扑学 

Topology原意为地貌,起源于希腊语Τοπολογ。形式上讲,拓扑学主要研究“拓扑空间”在“连续变换”下保持不变的性质。简单的说,拓扑学是研究连续性和连通性的一个数学分支。

拓扑学起初叫形势分析学,是德国数学家莱布尼茨1679年提出的名词。十九世纪中期,德国数学家黎曼在复变函数的研究中强调研究函数和积分就必须研究形势分析学。从此开始了现代拓扑学的系统研究。

等价

在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,圆和方形、三角形的形状、大小不同,但在拓扑变换下,它们都是等价图形;足球和橄榄球,也是等价的----从拓扑学的角度看,它们的拓扑结构是完全一样的。

而游泳圈的表面和足球的表面则有不同的拓扑性质,比如游泳圈中间有个“洞”。在拓扑学中,足球所代表的空间叫做球面,游泳圈所代表的空间叫环面,球面和环面是“不同”的空间。

性质

“连通性”最简单的拓扑性质。上面所举的空间的例子都是连通的。而“可定向性”是一个不那么平凡的性质。我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。这样的空间是可定向的。而德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面不能用不同的颜色来涂满。莫比乌斯曲面是一种“不可定向的”空间。可定向性是一种拓扑性质。这意味着,不可能把一个不可定向的空间连续的变换成一个可定向的空间。

莫比乌斯曲面图册

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,033评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,725评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,473评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,846评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,848评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,691评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,053评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,700评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,856评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,676评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,787评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,430评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,034评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,990评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,218评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,174评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,526评论 2 343

推荐阅读更多精彩内容