fast.ai 深度学习笔记:第一部分第一课

原文:Deep Learning 2: Part 1 Lesson 1

作者:Hiromi Suenaga

入门 [0:00]:

  • 为了训练神经网络,你肯定需要图形处理单元(GPU) - 特别是 NVIDIA GPU,因为它是唯一支持 CUDA(几乎所有深度学习库和从业者都使用的语言和框架)的设备。
  • 租用 GPU 有几种方法:Crestle [04:06] ,Paperspace [06:10]

Jupyter 笔记本和猫狗识别的介绍 [12:39]

  • 你可以通过选择它并按下shift+enter来运行单元格(你可以按住shift并多次按enter键来继续下拉单元格),或者你可以单击顶部的“运行”按钮。单元格可以包含代码,文本,图片,视频等。
  • Fast.ai 需要 Python 3
%reload_ext autoreload  
%autoreload 2  
%matplotlib inline 
# This file contains all the main external libs we'll use  
from fastai.imports import * 
from fastai.transforms import *  
from fastai.conv_learner import *  
from fastai.model import *  
from fastai.dataset import *  
from fastai.sgdr import *  
from fastai.plots import * 
PATH = "data/dogscats/"  
sz=224 

先看图片 [15:39]

!ls {PATH} 
models sample test1 tmp train valid

  • !表明使用 bash(shell)而不是 python
  • 如果你不熟悉训练集和验证集,请查看 Practical Machine Learning 课程(或阅读 Rachel 的博客
!ls {PATH}valid 
cats dogs

files = !ls {PATH}valid/cats | head  files 
['cat.10016.jpg',  'cat.1001.jpg',  'cat.10026.jpg',  'cat.10048.jpg',  'cat.10050.jpg',  'cat.10064.jpg',  'cat.10071.jpg',  'cat.10091.jpg',  'cat.10103.jpg',  'cat.10104.jpg'] 
  • 此文件夹结构是共享和提供图像分类数据集的最常用方法。 每个文件夹都会告诉你标签(例如dogscats)。
img = plt.imread(f' {PATH} valid/cats/ {files[0]} ')  plt.imshow(img); 

  • f'{PATH}valid/cats/{files[0]}' - 这是一个 Python 3.6 格式化字符串,可以方便地格式化字符串。
img.shape 
(198, 179, 3)
img[:4,:4] 
array([[[ 29, 20, 23],  [ 31, 22, 25],  [ 34, 25, 28],  [ 37, 28, 31]], 
[[ 60, 51, 54],  [ 58, 49, 52],  [ 56, 47, 50],  [ 55, 46, 49]], 
[[ 93, 84, 87],  [ 89, 80, 83],  [ 85, 76, 79],  [ 81, 72, 75]], 
[[104, 95, 98],  [103, 94, 97],  [102, 93, 96],  [102, 93, 96]]], dtype=uint8) 
  • img是一个三维数组(又名 3 维张量)
  • 这三个维度(例如[29, 20, 23])表示 0 到 255 之间的红绿蓝像素值
  • 我们的想法是利用这些数字来预测这些数字是代表猫还是狗,基于查看猫和狗的大量图片。
  • 这个数据集来自 Kaggle 竞赛,当它发布时(早在 2013 年),最先进的技术准确率为 80%。

让我们训练一个模型 [20:21]

以下是训练模型所需的三行代码:

data = ImageClassifierData.from_paths(PATH, tfms=tfms_from_model(resnet34, sz))  
learn = ConvLearner.pretrained(resnet34, data, precompute= True )  
learn.fit (0.01, 3) 
[ 0. 0.04955 0.02605 0.98975]  [ 1. 0.03977 0.02916 0.99219]  [ 2. 0.03372 0.02929 0.98975] 
  • 这将执行 3 个迭代,这意味着它将三次查看整个图像集。
  • 输出中的三个数字中的最后一个是验证集上的准确度。
  • 前两个是训练集和验证集的损失函数值(在这种情况下是交叉熵损失)。
  • 开始(例如,1.)是迭代数。
  • 我们通过 3 行代码在 17 秒内达到了 ~99% (这将在 2013 年赢得 Kaggle 比赛)![21:49]
  • 很多人都认为深度学习需要大量的时间,大量的资源和大量的数据 - 一般来说,这不是真的!

阅读更多

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351

推荐阅读更多精彩内容