相亲问题的本质就是摘一颗全麦田里最大最金黄的麦穗。
每一次的相亲,都是一次抽奖,遗憾的是,以现有的法律法规,你只能带走一位心上人。如何能够找到最理想的对象?靠缘分太过玄学,好在,我们有数学家找到的数学工具。
现在我们只需要你回答一个小问题就好:
你打算相亲几次?
我当然不能在文章里获得你的答案,那么假设你最多能接受20
次相亲。现在把20带入一个神奇的恋爱公式k=n/e
里,这个公式里n=20
、e=2.72(自然数取近似值)
。我们便可以得到k=7(取整)
,而这个k
,就是你需要从第几个对象开始寻找女朋友。
- 假设你能接受相亲
20
次 - 你需要先相亲
7
次,无论对方有多符合你的心意,你都不要确定,勇敢放弃。得到7
位里最合心意的相亲对象A
- 接下来,你需要从第
8
位相亲对象开始,与相亲对象A
对比。只要比相亲对象A
好,你就放弃剩下的相亲机会,勇敢把握住这位数学意义上的最优解。 - 恭喜你经过数学方法的辅助下,你已经得到一位数学意义上的心上人。
因为1/e=0.37
,所以k=n/e
可以近似等价为k=0.37*n
,先用整体数目(遇到的相亲对象)的37%
作为实验的观测范围,用来预测整体的情况,以后一遇到比预测范围(前37%
)任何一人都更好,就选择他。
数学原理(麦穗理论)
爱情与麦穗
柏拉图问老师苏格拉底什么是爱情?老师就让他先到麦田里去,摘一颗全麦田里最大最金黄的麦穗来。期间只能摘一次,并且期间只能向前走,不能回头。
柏拉图于是按照老师说的去做了,结果他两手空空的走出了田地。老师问他为什么摘不到?
他说:“因为只能摘一次,又不能走回头路,期间即使见到最大最金黄的,因为不知前面是否有更好的,所以没有摘。走到前面时,又发觉总不及之前见到的好,原来最大最金黄的麦穗早已错过了。于是我什么也没有摘!”
老师说:这就是爱情。
数学原理
假设我们碰到的麦穗有n个,我们用这样的策略来选麦穗,前k个,记住一个最大的麦穗记为d(可能是重量,也可能是体积),然后k+1个开始,只要大于d的,就选择,否则就不选择。
对于某个固定的 k,如果最适合的人出现在了第 i 个位置(k≤i≤n)
用 x 来表示 k/n 的值,并且假设 n 充分大,则上述公式可以写成:
对 -x · ln x 求导,并令这个导数为 0,可以解出 x 的最优值,它就是欧拉研究的神秘常数的倒数—— 1/e